Страница произведения
Войти
Зарегистрироваться
Страница произведения

Совместная жизнь


Жанры:
Проза, Мистика, Естествознание
Опубликован:
05.07.2018 — 05.07.2018
Аннотация:
Эта тема меня завораживает. Поэтому хочу своим удивлением поделиться с миром.
Предыдущая глава  
↓ Содержание ↓
↑ Свернуть ↑
  Следующая глава
 
 

В сообществах черных курильщиков источник органического вещества другой — это хемосинтезирующие бактерии. Они взвешены в толще воды, образуют бактериальные маты на склонах курильщиков и живут как симбионты внутри вестиментифер и некоторых других организмов. Всё остальное население гидротермальных оазисов питается за счёт этих бактерий. Громадная хемосинтетическая продукция обеспечивает биомассу гидротермальных сообществ в десятки тысяч раз превышающую таковую на соседних участках морского дна. При этом вестиментиферы (вместе с населяющими их бактериями) выступают как автотрофные члены сообщества. Таким образом, справедливо назвать вестиментифер "автотрофными животными".

В гидротермальных оазисах были найдены представители некоторых групп животных, считавшихся вымершими более сотни миллионов лет назад. Такие формы обычно называют "живыми ископаемыми". К их числу принадлежат сидячие усоногие ракообразные из рода Неолепас (Neolepas). Усоногие очень обычны на малых глубинах Мирового океана (к ним принадлежат, например, морские желуди и морские уточки, поселяющиеся на камнях, сваях и днищах судов). Они питаются, отфильтровывая из морской воды мелкие пищевые частицы (обычно это клетки планктонных водорослей). Неолепасы питаются точно также: они отфильтровывают из толщи воды сгустки хемосинтезирующих бактерий. Интерес к роду Неолепас связан с тем, что его представители характеризуются особенностями строения, которые не встречаются среди современных усоногих раков. Зато Неолепасы удивительно напоминают ископаемых усоногих, обитавших на мелководьях морей 230-130 млн. лет назад и считавшихся вымершими. Вероятно, гидротермальные оазисы стали убежищами для этих архаичных форм, не сумевших выдержать на мелководьях конкуренцию с более молодыми видами.

Что касается вестиментифер, то после открытия их в гидротермальных оазисах, геологи нашли объяснения находкам окаменевших трубок, которые встречаются в полиметаллических рудах. Трубки вестиментифер известны в залежах цинковых, медных и серебряных руд, образовавшихся в раннем каменноугольном периоде, то есть около 350 млн. лет назад. Таким образом, вестиментиферы — также принадлежат к древнейшим представителям фауны гидротермальных оазисов.

Открытие гидротермальных "оазисов", поддерживаемых энергией хемосинтеза и метанокисления, породило представление об энергетической "независимости" гидротермальных систем от продукции фотосинтеза и, следовательно, от солнечной энергии. Для биосферы Земли такая ситуация была бы уникальной. О полной изоляции, правда, речь не шла, т.к. всем гидротермальным организмам, в том числе, аэробным хемосинтезирующим и метанокисляющим бактериям, требуется кислород, представляющий собой продукт фотосинтеза. Тем не менее, представление об относительной независимости обитателей гидротерм от солнечной энергии сохранилось и по сей день.

Несмотря на ключевую роль хемосинтетической продукции в функционировании большинства глубоководных гидротермальных сообществ, количественная сторона этой "роли" остается не изученной. По сути, лишь вестиментиферы и первиатные погонофоры, во взрослом состоянии полностью лишенные пищеварительного тракта, целиком зависят от симбионтов. Большинство же прочих симбиотрофных животных сочетают симбиотрофию с голозойным питанием (путем сестонофагии или детритофагии). Доля хемосинтетической органики при этом остается неизвестной. Одна из первых попыток оценить этот вклад сделана для креветок Rimicaris exoculata. Так, согласно расчетам авторов, использовавших данные о соотношении стабильных изотопов углерода и метод "баланса масс", за счет эктосимбионтов взрослые креветки получают более 80% углерода, а молодь около 30%.

Так или иначе, продукция фотосинтетического происхождения играет определенную роль в энергетике гидротермальных экосистем. Эта роль может оказаться существенной, если учитывать, что планктонным личинкам многих гидротермальных животных, в том числе и вестиментифер, приходится питаться продукцией фотосинтеза вне гидротермальных сообществ. Так, недавно выяснилось, что креветки R. exoculata на личиночной (планктонной) стадии жизненного цикла накапливают огромное количество липидов, содержащих полунасыщенные жирные кислоты фотосинтетического происхождения. Липиды служат запасным питательным веществом, обеспечивающим планктонные стадии креветок резервом пищи при поиске гидротермальных биотопов (это в той или иной степени оказалось свойственно всем гидротермальным креветкам. При попадании на активное поле креветки приобретают симбионтов и переходят к симбиотрофному способу питания. Липидный резерв при этом начинает постепенно расходоваться. У взрослых особей липиды обнаруживаются лишь в незначительном количестве. Интересно, что липиды фотосинтетического происхождения были обнаружены также у вестиментиферы Ridgea piscesae. Их происхождение пока не понятно, но возможность накопления этих липидов на личиночной стадии вполне вероятна. Весьма вероятно, что и прочие представители гидротермальной фауны, в том числе, специализированные (особенно их личиночные стадии), в большей или меньшей степени зависят от продукции фотосинтетического происхождения, и это накладывает серьезные ограничения на представления об энергетической независимости гидротермальных экосистем, в том числе и в прошлые геологические эпохи.

3. От одноклеточных до многоклеточного организма

Амёба — простейшее одноклеточное, относящаяся к типу Protozoa. Клетка у амёбы выполняет все жизненно необходимые для нее функции. Как она охотится? Она выпячивает ложноножки, которые охватывают нечто съедобное для амёбы.

Что должна сделать амёба, чтобы съесть свою жертву? Амёба, в принципе, должна выпустить ферменты (она умеет это делать), которые расщепят жертву на кирпичики. Но проблема состоит в том, что амёба и её жертва малы по сравнению с той водной средой, в которой всё это дело происходит. И если амёба начнёт выделять ферменты для того, чтобы растворить часть бактерий в пруду, то она потратит на это энергии больше, чем потом получит от поглощения этой жертвы. Эту проблему амёба решает одним-единственным образом. Она сужает пространство, в котором происходит растворение, и делает его настолько маленьким, что процесс становится энергетически выгодным. Она подползает к своей жертве, обволакивает своим телом и обволакивает её чем-то вроде пищеварительной вакуоли. Теперь уже становится выгодным выпустить сюда пищеварительные ферменты, всё растворить, всё нужное взять, а ненужное — выбросить. Эту амёбу может съесть теперь только более крупная амёба, которая способна эту, предыдущую амёбу, взять в большую пищеварительную вакуоль.

Размер клетки по физическим причинам ограничен весьма небольшими пределами. Так что таким образом — увеличивая размеры клетки — совершенствовать защиту и нападение можно лишь до определенной степени. Даже инфузория, очень крупный представитель простейших, имеет врагов. И ещё из-за своих размеров она вынуждена иметь дополнительное ядро, чтобы её клетка нормально функционировала. Вообще говоря, это путь, по которому нельзя идти бесконечно долго. У инфузории, кстати говоря, также есть клеточный рот, и вообще, они с амёбой решают одну и ту же задачу — сузить объём среды, в котором происходит пищеварение. Как можно бороться с такими хищниками? Вообще говоря, одним-единственным способом. Если более мелкие амёбы (жертвы) образуют комочек из многих клеток, то большая амёба их съесть не сможет.

Примером колонии отдельных одноклеточных организмов может служить вольвокс (одноклеточная водоросль). В принципе, клетка не погибает, если отделить её от колонии, но при размножении довольно быстро образуется колониальная форма. Колония способна размножаться, то есть внутри колонии образуются более мелкие колонии. До 10 000 одноклеточных может входить в такие колонии. Действия между ними согласуются через контакты между отдельными клетками, то есть все клетки машут жгутиками согласованно, чтобы колония могла перемещаться не беспорядочно.

Но те, кто находится в центре комочка, находятся в плохом положении — они не имеют доступа к еде, и в итоге они гибнут. Таким образом, мы получаем следующую систему — полый шарик, все клетки которого имеют доступ к внешней среде, и в то же время их не может съесть более крупная амёба.

И мы имеем пример такого симбиоза колонии клеток. Именно так устроено примитивное животное губка. Хотя с виду губки похожи на растения, к перемещению не способны, они относятся к животным, потому что фотосинтезом не занимаются и имеют животный тип питания. Стенка у губки имеет трехслойное строение: покровные (толстые наружные) клетки, жгутиковые клетки (хоаноциты, внутренние клетки). Пространство между наружным и внутренним слоями клеток заполнено слизистым веществом, в котором находятся клетки амёбоциты (похожи на амёбу). В отличие от кишечнополостных, во внутренней полости у губок не происходит пищеварение. Эта полость служит только для протока воды. Жгутики машут таким образом, что вода протекает через поры в теле губки и выходит через устье губки. С водой поступают частицы, которые хоаноциты захватывают и поглощают. Покровные клетки и амёбоциты питаются частью съеденной хоаноцитами пищи, которую те им передают. С одной стороны, мы видим дифференцированные клетки, но с другой стороны, они дифференцированы не насовсем: хоаноцит может превратиться в амёбоцит, потом перебраться на другую сторону и стать покровной клеткой. Таким образом, нельзя сказать, что губки имеют ткани, как у высших животных: хотя у них и имеются слои дифференцируемых клеток, последние специализированы временно. Ещё раз подчеркнём, что тут уже имеется разделение функций между клетками, клетки не одинаковые, но это разделение временно.

Если, говоря о вольвоксе, мы по-прежнему имели дело с представителем Простейших, но уже колониальным, а, рассматривая губки, имели какой-то переходный вариант, то вот отсюда начинает появляться следующая, очень важная конструктивная идея, которая среди ныне живущих организмов реализована у Типа Кишечнополостных. Это гидры, кораллы и полипы. Кишечнополостные реализуют следующую стратегию. Представьте себе мячик, из которого выпустили воздух. Этот мячик можно легко вогнуть в себя. Тогда мы имеем объект такой формы, что все клетки по-прежнему имеют доступ к внешней среде и могут существовать, но при этом мы получаем одно очень большое конструктивное преимущество. Внутри организма образуется полость, которую можно сузить и закрыть, и в ней уже вести пищеварение. В частности, большую амёбу можно сюда поместить, закрыть полость и спокойно её переваривать. Этот тип организации характерен для Кишечнополостных. Если это кишечнополостное будет неподвижно сидеть на дне, то получится полип, если будет плавать по поверхности моря, то получится медуза. Суть от этого не изменится. А изменятся некоторые обязательства, которые животные должны на себя взять. До этого шла речь об организмах, у которых клетки жили просто некоторым случайным собранием и никакие функции друг с другом не делили. Теперь же мы должны разделить обязанности, поскольку реальный доступ к пище имеют внутренние клетки, относящиеся к внутреннему слою, так называемой энтодерме. Но внешние клетки выполняют очень важную функцию. Во-первых, среди них развиваются так называемые чувствительные клетки — нервные клетки. Ведь мы же должны знать, когда нужно сжать эту полость (когда внутрь попала амёба, иначе сжимать её бессмысленно). С другой стороны, должны быть клетки, которые способны сокращаться, которые могут принять команду "сжать". И получается, что внутренние клетки должны кормить внешние. Таким образом, здесь имеет место то, чего не происходит у таких организмов как губки, — дифференцирование клеток, и разделение между ними функций. Эти самые кишечнополостные животные имеют радиальную симметрию, потому что для них важна только ось "верх-низ" и совершенно не важны стороны света.

Каким образом клетки, содержащие одинаковый геном, могут иметь разную форму и выполняют разные функции? Для этого должны синтезироваться разные белки, которые идут и на строительство клеток, и на ферментативные функции. Гены во всех клетках одинаковые, за исключением половых клеток. То есть, гены во всех клетках одинаковые, но при этом клетки имеют разную форму и разные функции. Это объясняется тем, что в каждой клетке работают не все гены, а только те, которые нужны в данный момент. Гены могут включаться и выключаться, то есть, как говорят, активироваться либо быть репрессированными (выключенными).

РНК-полимераза — это фермент, который считывает генетическую информацию с ДНК и синтезирует матричную РНК. В РНК-полимеразе есть х-фактор — белок, который распознает промотор и помогает РНК-полимеразе на него сесть и начать транскрипцию. Таким образом переключается работа больших групп генов, это такая системная регуляция. Клетка переключается с одной жизненной программы на другую. Очень большую роль во всех этих процессах играет циклический аденазинмонофосфат (цАМФ). Он — типичный регулятор внутриклеточного метаболизма. Такая система изменения активности аденилатциклазы и, соответственно, концентрации циклического АМФ в клетке, работают не только у бактерий, но и у очень многих организмов, в том числе и у нас с вами. Через аденилатциклазу, регулируя ее активность, действуют некоторые гормоны. Меняя концентрацию циклического АМФ, эти гормоны влияют на внутриклеточные процессы.

Интересно, что циклический АМФ используется не только для регуляции внутриклеточных процессов, но и для межклеточной коммуникации при формировании многоклеточности. Расскажем об этом на примере уникального организма — амёбы, которая называется Dictyostelium discoideum. Это одноклеточная амёба, которая живет в почве и питается бактериями. Иногда её относят к грибам.

Когда всё хорошо, амёбы диктиостелиума ползают по своему месту обитания, питаются и делятся время от времени. Но если они голодны, долго не попадалось хорошей еды и их энергозапасы начинают истощаться, они выпускают во внешнюю среду цАМФ, соседние клетки-амёбы этот сигнал воспринимают. Если клетки сыты, то они на него не реагируют, если же они голодны, то они начинают сползаться в кучу. Вначале они собираются небольшими группами, выпускают циклический АМФ, его концентрация становится больше, поэтому одиночные клетки-амёбы начинают к ним подползать, образуя агрегат клеток. В итоге к самой большой кучке сползаются остальные группы клеток, и они формируют единый многоклеточный организм, который называется псевдоплазмодий. Миллионы таких клеток собираются вместе и образуют огромную клеточную массу, сильно смахивающую на многоклеточный организм. Он способен ползать, и в отличие от амёбы, способен перемещаться на заметные расстояния. Эта масса передвигается и реагирует на свет и химические вещества, словно единое животное. Он с довольно заметной скоростью уползает из плохого места. Если ему удается переползти туда, где есть еда, то он опять распадается на отдельные клетки-амёбы, которые, как приличные одноклеточные амёбы, начинает питаться. Если же он ползёт — ползёт, а хорошая жизнь всё не наступает, то он останавливается, примерно 20% клеток ползут вверх, образуя жёсткий стебелёк, и затем отмирают (то есть, приносят себя в жертву всем остальным). По стебельку остальные клетки переползают на самую верхушку, образуют плодовое тело, в котором созревают споры. В конечном итоге слизевик предстаёт в виде плодоносящего тела, во многом похожего на спорангий какого-либо гриба. У него имеется высокая ножка с защитной внешней оболочкой, а сверху располагается мешочек со спорами. Они разбрасываются на некоторое расстояние вокруг, пережидают неблагоприятный период. Когда наступает хорошее время, они прорастают в амёбы, и вся история начинается заново.

Предыдущая глава  
↓ Содержание ↓
↑ Свернуть ↑
  Следующая глава



Иные расы и виды существ 11 списков
Ангелы (Произведений: 91)
Оборотни (Произведений: 181)
Орки, гоблины, гномы, назгулы, тролли (Произведений: 41)
Эльфы, эльфы-полукровки, дроу (Произведений: 230)
Привидения, призраки, полтергейсты, духи (Произведений: 74)
Боги, полубоги, божественные сущности (Произведений: 165)
Вампиры (Произведений: 241)
Демоны (Произведений: 265)
Драконы (Произведений: 164)
Особенная раса, вид (созданные автором) (Произведений: 122)
Редкие расы (но не авторские) (Произведений: 107)
Профессии, занятия, стили жизни 8 списков
Внутренний мир человека. Мысли и жизнь 4 списка
Миры фэнтези и фантастики: каноны, апокрифы, смешение жанров 7 списков
О взаимоотношениях 7 списков
Герои 13 списков
Земля 6 списков
Альтернативная история (Произведений: 213)
Аномальные зоны (Произведений: 73)
Городские истории (Произведений: 306)
Исторические фантазии (Произведений: 98)
Постапокалиптика (Произведений: 104)
Стилизации и этнические мотивы (Произведений: 130)
Попадалово 5 списков
Противостояние 9 списков
О чувствах 3 списка
Следующее поколение 4 списка
Детское фэнтези (Произведений: 39)
Для самых маленьких (Произведений: 34)
О животных (Произведений: 48)
Поучительные сказки, притчи (Произведений: 82)
Закрыть
Закрыть
Закрыть
↑ Вверх