Страница произведения
Войти
Зарегистрироваться
Страница произведения

До и после Победы. Книга 3. Перелом. Часть 2


Статус:
Закончен
Опубликован:
25.05.2018 — 25.05.2018
Читателей:
1
Аннотация:
Вынесены главы 24-50
Предыдущая глава  
↓ Содержание ↓
  Следующая глава
 
 

А с фоторезисторами, пожалуй, мы пока определились — вакуум, и только вакуум. Чем нам была привлекательна технология вакуумных фоторезисторов — на стабилизацию параметров фотоэлемента требовалось не более суток — за это время фоточувствительная пленка приходила в равновесное состояние, отдав или наоборот приняв нужное ей для нормальной работы количество кислорода. Причем мы уже научились корректировать параметры получавшихся фотоэлементов в процессе их изготовления — после осаждения и отжига мы ввели этап корректировки параметров, когда по измеренному сопротивлению фоторезистора, по его откликам на облучение светом, мы изменяли состав газовой атмосферы в баллоне — добавляли серу или кислород, а то и испаряли внутрь свинец, чтобы уменьшить дырочную проводимость и тем самым повысить быстродействие — и, выдерживая элемент при определенной температуре, подгоняли сопротивление до нужного значения, и только потом отпаивали его от вакуумной системы, которая по сути стала не просто вакуумной, а системой с управляемой атмосферой. Да, это увеличило время изготовления почти на два часа и пока требовало ручной работы техника — для автоматизации еще не было наработано достаточно данных, чтобы выстраивать формализованные зависимости между текущими параметрами и вариантами воздействия. Зато выход годных приборов только за счет этой процедуры повысился до семидесяти процентов, так что при том же объеме аппаратуры мы производили даже больше элементов, чем до введения этого этапа корректировки. Более того, управляемая атмосфера стеклянной колбы позволяла восстанавливать работоспособность фотоэлементов — заморозкой или разогревом мы могли изменить содержание кислорода в поликристаллической пленке и тем самым вернуть ее характеристики близко к номинальным.

Сама пленка тоже получалась довольно однородной, тогда как в тех же "мокрых" фоторезисторах однородность была гораздо меньше — тут сказывался и сам факт осаждения из раствора, и необходимость осаждения в несколько слоев, иначе влага выходила бы из пленки недопустимо долгое время. Правда, к лету сорок третьего эта технология уже достаточно продвинулась — ведь полтора года исследователи только и делали, что изучали закономерности осаждения пленок из растворов. Начнут реакцию, тут же ее прекратят — и смотрят в микроскоп — где там начали появляться центры кристаллизации ? Как из них растут кристаллиты ? А если повысить температуру на пару градусов — не появится ли больше центров кристаллизации, соответственно, не получится ли пенка более однородной ? А если добавить, например, медный купорос — не сработают ли его кристаллики зародышами ? Ведь он выпадет раньше, так как его растворимость при такой температуре будет меньше. Ну и так далее — по части изучения закономерностей роста пленок мы очень неплохо продвинулись за это время, в том числе научились легировать осаждаемую пленку так, чтобы она сразу имела дырочную проводимость. Ведь химически осажденные пленки, если с ними ничего не делать, имеют электронный тип проводимости — в них осаждается немного больше свинца. Совсем чуть-чуть. Но это и делало их нефоточувствительными — дополнительные электроны, выбитые светом, практически никак не изменяли проводимость элемента, соответственно, это изменение не могли отследить и внешние цепи, в которые он был включен. Дырочная же проводимость как раз резко реагировала на дополнительных электроны — изначально их было мало, поэтому сопротивление элемента было велико — ток без облучения, то есть темновой ток, был невелик. А вакуумная технология позволяла тонко контролировать состав пленки — добавишь чуть больше серы в исходные вещества — и сразу получаешь дырочную проводимость, требуется уже меньше кислорода, причем впоследствии мы заметили, что если делать пленки с высоким сопротивлением, то они деградируют гораздо медленнее, а вот те же химические пленки меняли свои параметры очень долго — собственно, этим и была вызвана необходимость их выдержки почти год. Ну, если не хотим калибровать приборы чуть ли не каждый день. Но поначалу и такие элементы шли на ура — лучше тратить на калибровку пару часов в день, чем вообще не иметь таких замечательных "глаз".

Обнаружили мы и еще один плюс вакуумных элементов — они сохраняли линейность характеристик при повышении напряжения, а чем оно выше — тем выше и быстродействие. Поэтому вскоре мы стали применять эти элементы и в сканирующих системах, где наши "мокрые" элементы работать не могли — они слишком инерционны — время срабатывания было порядка нескольких миллисекунд. В общем — с одной стороны жаль, что мы не сразу выявили все преимущества вакуумных элементов, с другой — те же квантовые точки обещали стать полезным побочным продуктом "мокрых" технологий — глядишь и не потребуется возиться со всеми этими ЖК и плазменные панели. Была и третья технология, поначалу выглядевшая многообещающе, но в ней также самым важным стал побочный продукт.

ГЛАВА 14.

Но вначале работ еще не было понятно — какая из технологий ИК-детекторов выстрелит. Поэтому мы шли по всем возможным вариантам. Так, мы исследовали и высокотемпературный нагрев. В отличие от осаждения пленок возгонкой, при котором температура не превышала шестисот градусов по цельсию и, соответственно, процесс шел достаточно медленно, при высокотемпературном нагреве исходное вещество нагревалось до температур тысяча сто-тысяча двести градусов — то есть выше температуры плавления сульфида свинца, но еще ниже температуры его кипения. Скорость осаждения пленки при этом была довольно высока — пять-десять минут — и пленка готова. Экономия времени по сравнению с возгонкой — в десять раз. И затем — отжиг подложек с пленкой в муфельных печах при более низкой температуре в шестьсот-семьсот градусов по цельсию, в присутствии кислорода, чтобы активировать фотоэлементы. После активации надо было выдержать элементы несколько месяцев в среде воздуха, но поначалу мы про это не знали — нас подкупала высокая скорость их изготовления. Тем более что часть элементов все-таки работала сразу после отжига, хотя и недолго и нестабильно.

Поэтому-то мы и ставили поначалу почти исключительно на эту технологию. "Мокрую" технологию мы отставили в сторону почти сразу — там работало человек тридцать — просто на всякий случай, благо оборудование было довольно простым — емкости, пробирки, весы и печки — это не вакуумные насосы для других методов. Вакуумная технология возгонки у нас была гадким лебедем, хотя, как потом оказалась, в тех условиях она была единственно приемлемым вариантом — слегка увеличенное время напыления окупалось готовностью элементов почти сразу после окончательной запайки колбы, а отсутствие общения с атмосферой гарантировало стабильность характеристик в течение длительного времени, тогда как высокотемпературная, хотя и позволяла делать сами элементы буквально за минуты, но потом элемент контактировал с воздухом — иначе его просто не активировать — если кислород вводить сразу при напылении, то при тех высоких температурах, что сопровождали процесс напыления, кислород активно реагировал с материалами элемента, создавая оксиды свинца и серы, то есть свободного кислорода между кристаллами почти не оставалось — поэтому требовалась отдельная операция активизации — насыщения кислородом межкристалльного пространства — при гораздо более низких температурах, а отсюда — большое время уравновешивания характеристик, да и последующий контакт с атмосферой или защитным лаком совсем не гарантировал постоянства характеристик. К сожалению, это стало понятно только по прошествии почти двух лет.

Но нам казалось, что вот-вот, совсем скоро, еще чуть-чуть — и мы отработаем технологию. Поэтому мы с завидным упорством бились лбом об стену, проводя многочисленные эксперименты. За счет более высоких скоростей изготовления в этом процессе было занято меньше людей непосредственно на производстве, но вот средства автоматизации тут вводились более ускоренными темпами — человеку гораздо сложнее было выдержать нужный технологический режим, когда требуемые температуры надо было выдерживать чуть ли не несколько секунд, затем меняя их на другие.

Тут-то у нас и начала вводиться управляющая техника на перфолентах. Сама перфолента управляла отдельными элементами печи — вакуумным насосом и нагревательным элементом. В качестве обратной связи для насоса использовалось давление, а для нагревателя — температура, причем если давление еще как-то можно было выставить на самом насосе и просто подождать, когда оно будет достигнуто, то для нагревателя сразу же потребовалось вводить и отсечку по времени работы на определенной температуре — прогрев, доводка до рабочей температуры, выдержка при рабочей температуре и затем — отдельный график для остывания подложки с осажденной пленкой. Поэтому тут уж без перфоленты было никуда. Ну, поначалу-то за всеми этими температурами следил человек, но вскоре эту работу поручили управляющему компьютеру. Тут уж я поучаствовал в процессе разработки от всей души. Еще бы — наконец-то появилось устройство, в котором требовалось хоть какое-то цифровое управление. Конечно, оно было не таким уж и сложным, но, как я и предполагал, это стало только началом.

Сама последовательность действий выглядела простой — выставить значение вакуума для насоса, откачать воздух, дождаться нужного значения вакуума, выставить температуру нагревателя, дождаться ее достижения, выдержать при ней определенное время образец, повторить со следующей температурой — вроде все просто. И наши конструктора сразу же решили ввести в перфоленте два значения — для давления и температуры, потом подумали и добавили третье — для таймера на операционнике, и получалось, что на широкой ленте шло бы три ряда цифр — давление-температура-время — и аппарат бы их отрабатывал. Красота ! Почти ...

— А если кому-то не надо работать ?

— А не будем заполнять это значение — и все !

— А если потребуется добавить еще какое-то значение ?

— А ....

Тут-то автоматизаторы и приуныли. Действительно, если их схема и была рабочей при трех параметрах, то чтобы ее сделать рабочей при четырех, потребовалось бы добавлять на перфоленту еще группу линий для этих цифр, а для пяти, шести ... Нет, мы могли бы делать перфоленты какой угодно ширины, но я был рад хоть тому, что они понимали ограниченность их решения. Так что, подождав ради приличия полдня — больше не выдержал, я взял быка за рога.

— Значит, так. Вводим команды. Две цифры следуют друг за другом — первая — номер устройства, вторая — значение для него. Блок управления отрабатывает их последовательно — так и будет нам счастье.

— Хм ... пожалуй ... а как выждать время ?

— Ну, значит добавляем еще третье значение — время.

В итоге почти так и получилось — управляющий агрегат протягивал перфоленту, первая позиция означала номер устройства, вторая — значение, которое ему надо было достичь, третья — время, которое надо было ждать, чтобы достичь этого значения — то есть время, например, выдержки при данной температуре. Не совсем "команды", но я в мыслях уже летел вперед. Естественно, сразу же, как только народ ухватил суть разделения разнотипных данных по разным позициям, он стал оптимизировать систему. Немного подумав, мы отказались от кодирования номера устройства, и стали выделять под каждое устройство по одной из дорожек — есть отверстие на дорожке "пять" — включается пятое устройство. Для начала хватило и десяти дорожек. Зато это позволило отказаться от дешифраторов — цифровых микросхем у нас было еще немного, и мы старались сэкономить на чем только возможно.

Но и потом пошли всяческие уточнения. Например, некоторые устройства могли работать, не дожидаясь окончания работы предыдущих устройств — скажем, откачка воздуха и предварительный прогрев подложки могли идти параллельно. А вот нагрев исходного материала мог начинаться только после откачки воздуха. Хотя, подумав, мы пришли к мнению, что он мог начинаться и до полной откачки — надо только не доводить температуру до высоких значений, чтобы материал не стал окисляться или испаряться. Так что система управления была перестроена — в регистр устройства подавалось значение, которое оно должно было достичь после включения, а в регистр ожидания — позиция устройства, которого ему надо было дождаться.

Тоже оказалось плохо — таких устройств могло быть много — для того же испарения требовалось и прогреть подложку, и откачать воздух — то есть испаритель должен был ожидать окончания работы двух устройств. А схема регистра была рассчитана только на одно устройство. Тут вылез положительный побочный эффект отказа от кодирования номера устройства — мы просто ввели маску устройств, которых надо было дождаться — она так же записывалась в регистр, но схема сравнения с сигналами на шине готовности теперь просто сравнивала сигналы один-к-одному, без шифраторов — еще и тут сэкономили на логических элементах. А на перфоленте появилась еще одна позиция — маска ожидания.

И вот теперь все становилось на свои места. Первой группой цифр на перфоленте шли команды для насоса высокого давления, который откачивал основной объем воздуха — создавал форвакуум. Точнее, шли не команды, а параметры работы — номер-позиция устройства, нужное давление, значение таймера ожидания — сколько вообще нужно ждать (выставили чуть больше среднего времени, которое обычно затрачивалось на предварительную откачку), маска ожидания других устройств (так как форвакуум начинал работу первым, ждать ему никого было не надо, поэтому маска была не заполнена, хотя потом добавили ожидание защелки, а то как-то раз просто забыли закрыть дверцу и насос начал шустро прогонять воздух помещения через вакуумную камеру).

Соответственно, схема управления сначала считывала позицию "номер устройства" и открывала входные цепи регистров соответствующего устройства, и значения из трех последующих позиций попадали с шины считывания в его регистры — переключением между регистрами также занимался счетчик позиций управляющей схемы.

То есть регистр формакуумного насоса получал величину давления, которое надо достичь, таймаут и маску ожидания, и начинал работать, как только сигналы на шине готовности устройств совпадали с маской ожидания — его же манометр измерял давление, а аналоговый компаратор на операционнике постоянно сравнивал значение манометра и значение регистра, преобразованное ЦАП. Как только эти величины становились равны — он выдавал в шину готовности устройств сигнал "закончил".

Второй группой шли команды для насоса высокого давления — управляющее устройство считывало его параметры сразу после параметров для форвакуумного, но, так как в маске ожидания находился номер насоса низкого давления, он запускался только когда тот выдавал на шину готовности сигнал "готов". И, так как для насоса высокого давления продолжалось поддержание своего давления, он периодически включался, чтобы откачать из своего входного патрубка избыток воздуха, что создал насос низкого давления — для работы насосов пришлось ввести еще и дорожку "постоянная работа" — просто начали пробивать на одной из еще свободных дорожек, чтобы не переделывать управляющую схему под еще одну последовательную позицию, хотя чего там переделывать ? — просто увеличить количество позиций для счетчика — перепаять проволочки константы позиций, по которой счетчик обнулялся и выдавал управляющему устройству сигнал "начало параметров для следующего устройства". Но вот пошли почему-то по такому пути — "широкое командное слово". Ну и ладно — потом переделают, если потребуется.

123 ... 2021222324 ... 434445
Предыдущая глава  
↓ Содержание ↓
  Следующая глава



Иные расы и виды существ 11 списков
Ангелы (Произведений: 91)
Оборотни (Произведений: 181)
Орки, гоблины, гномы, назгулы, тролли (Произведений: 41)
Эльфы, эльфы-полукровки, дроу (Произведений: 230)
Привидения, призраки, полтергейсты, духи (Произведений: 74)
Боги, полубоги, божественные сущности (Произведений: 165)
Вампиры (Произведений: 241)
Демоны (Произведений: 265)
Драконы (Произведений: 164)
Особенная раса, вид (созданные автором) (Произведений: 122)
Редкие расы (но не авторские) (Произведений: 107)
Профессии, занятия, стили жизни 8 списков
Внутренний мир человека. Мысли и жизнь 4 списка
Миры фэнтези и фантастики: каноны, апокрифы, смешение жанров 7 списков
О взаимоотношениях 7 списков
Герои 13 списков
Земля 6 списков
Альтернативная история (Произведений: 213)
Аномальные зоны (Произведений: 73)
Городские истории (Произведений: 306)
Исторические фантазии (Произведений: 98)
Постапокалиптика (Произведений: 104)
Стилизации и этнические мотивы (Произведений: 130)
Попадалово 5 списков
Противостояние 9 списков
О чувствах 3 списка
Следующее поколение 4 списка
Детское фэнтези (Произведений: 39)
Для самых маленьких (Произведений: 34)
О животных (Произведений: 48)
Поучительные сказки, притчи (Произведений: 82)
Закрыть
Закрыть
Закрыть
↑ Вверх