↓ Содержание ↓
↑ Свернуть ↑
| Следующая глава |
Unknown
Дилетант...Это я...хочу разобраться.
Для начала, давайте определимся с понятиями. Это лишь для того, чтобы не было недопонимания. Очень часто автор и читатели не понимают друг друга.
Кавита́ция (от лат. cavitas — пустота) — физический процесс образования пузырьков (каверн , или пустот) в жидких средах, с последующим их схлопыванием и высвобождением большого количества энергии, которое сопровождается шумом и гидравлическими ударами. Кавитационные пузырьки могут содержать разреженный пар. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении её скорости, например за гребным винтом судна (гидродинамическая кавитация), либо при прохождении акустической волны большой интенсивности во время полупериода разрежения (акустическая кавитация ). Существуют и другие причины возникновения эффекта в результате внешних физических воздействий. Перемещаясь с потоком в область с более высоким давлением или во время полупериода сжатия, кавитационный пузырёк схлопывается, излучая при этом ударную волну. В своей основе кавитация имеет тот же механизм действия, что и ударная волна в воздухе, возникающая в момент преодоления твердым телом звукового барьера.
Выделю важное «...при увеличении её скорости...».
Появление кавитации напрямую зависит от скорости жидкости относительно винта.
Соответственно от скорости его вращения, которое увеличивают для достижения бОльшей скорости хода.
Можно выделить -ДО и ПОСЛЕ кавитационную скорость.
Если упростим -кавитация это шум. Чрезмерный шум при движении подводного объекта ,который подводной лодке совершенно не нужен!
Дабы придать статье некую «псевдонаучность» (так принято), приведу несколько формул.
В дальнейшем постараюсь этого избегать, так как сам не очень люблю формулы.
Взято из студопедии с моими правками, исходя из требований тактики применения ПЛ.
Природу кавитации можно проследить на примере элемента лопасти обтекаемого под углом атаки
потоком жидкости, имеющим на бесконечности в точке А скорость υ0 и давление р0 Выделим на одной линии тока с точкой А точку В у поверхности элемента лопасти. Скорость и давление в точке В обозначим соответственно через υ1и р1. Тогда уравнение Бернулли для линии тока запишется так:
р0 + ρυ0/2 = р1 + ρυ1/2, или δр = р1— р0 =
[1 — (υ1/υ0)2].
Из формулы видно, что в тех точках поверхности элемента, где υ1>υ0, давление понижается δр<0; в местах, где υ1<υ0 давление повышается δр>0. В результате на нагнетающей стороне лопасти вращающегося винта создается зона повышенного давления, на засасывающей стороне — зона пониженного давления.
Характерное распределений давлений на засасывающей и нагнетающей поверхности лопасти работающего гребного винта показано на рисунке выше. Как следует из рисунка, площадь эпюры давлений, а следовательно, и величина упора, развиваемого гребным винтом, на 70
80% определяется разряжением на засасывающей поверхности и только на 20
30% — повышением давления на нагнетающей поверхности лопасти.
При определенной частоте вращения гребного винта скорость обтекания лопасти достигает значения в 3
5 раз превышающего поступательную скорость судна. При этом давление на засасывающей поверхности понижается до давления насыщенных паров. В результате холодного кипения воды из нее выделяются растворенные газы. Пары и газы оттесняют воду от поверхности лопасти и образуют на ее засасывающей стороне кавитационную каверну.
Различают две стадии кавитации.
Первая характерна тем, что каверна захватывает только часть засасывающей поверхности лопасти, где скорость частиц наибольшая. На этой стадии гидродинамические характеристики гребного винта изменяются незначительно по сравнению с их значениями при безкавитационном обтекании. Объясняется это тем, что площади эпюр давлений при безкавитационной работе винта и в условиях первой стадии кавитации практически равны. Однако первая стадия кавитации нежелательна, так как является причиной механического разрушения материала лопасти -эрозии. Пары воды, переходя из области каверны в область более высоких давлений, конденсируются. Процесс конденсации пара и смыкания (разрушения) кавитационных пузырьков происходит с большой скоростью. В момент конденсации пузырьков пара вода мгновенно заполняет образующую пустоту, нанося по лопасти гидродинамические удары, причем местные давления достигают больших значений. В результате, в местах замыкания каверны, поверхность лопасти разрушается. Снова о тактике-гидродинамический удар это шум.
На второй стадии кавитационная каверна захватывает всю засасывающую сторону лопасти и замыкается в потоке за гребным винтом. На этой стадии кавитации эрозии не происходит, так как пары конденсируются за пределами лопасти. Однако гидродинамические качества винта по сравнению с безкавитационным обтеканием заметно ухудшаются. Увеличение частоты вращения винта уже не приводит к уменьшению давления на засасывающей поверхности лопасти, где
р
рd, отчего упор винта практически не растет. Кроме того, потоком обтекается профиль более низкого гидродинамического качества (за счет каверны). Это вызывает увеличение вращающего момента, приложенного к винту, и уменьшение КПД движителя.
Представление об ухудшении гидродинамических качеств винта, можно составить по кривым действия винта, отвечающим безкавитационному обтеканию и кавитации различной степени развития . Сплошными красными линиями нанесены зависимости коэффициентов упора
, момента
, и КПД ηр винта от относительной поступи λр при безкавитационнном обтекании и в первой стадии кавитации.
Пунктирные линии представляют те же зависимости при наступлении второй стадии кавитации. Видно, что ухудшение гидродинамических характеристик наблюдается с уменьшением λр(например, с увеличением частоты вращения винта n при υp=const), что обусловлено увеличением углом атаки на лопастях. Величины
,
и ηр во второй стадии кавитации зависят не только от λр, но и от параметра χ , называемого числом кавитации.
ЧИСЛО КАВИТАЦИИ— характеризует величину предельного разряжения на лопасти, (в долях скоростного напора), которое может быть достигнуто в воде в заданных условиях:
χ =
,+где ра — атмосферное давление; hс — глубина погружения винта .
То есть, если коснуться тактики, эта величина зависит от глубины хода ПЛ, а не только от скорости ее движения.
А если по науке коэффициент кавитации определяется только внешними факторами (ра, hс, плотностью и температурой воды от которой зависит рd), поступательной скоростью υp и не зависит от геометрических элементов гребного винта.
Критическое число кавитации— χкр соответствует возможному наибольшему разрежению на лопастях при докавитационных режимах их обтекания. Начало кавитации гребного винта определяется условием χ = χкр. При χ > χкр кавитация отсутствует, при χ < χкр винт кавитирует, причем тем больше, чем меньше число χ по сравнениюχкр.
В какой бы стадии не протекала кавитация, она всегда приводит к нежелательным последствиям: усиливает шум работающего винта, вызывает эрозию лопастей, снижает гидродинамические характеристики гребного винта, увеличивает неравномерность загрузки лопастей, что является одной из причин вибрации гребного вала и, как следствие, корпуса судна. Поэтому при проектировании винтов стремятся обеспечить их безкавитационную работу. С этой целью применяют профили с более равномерным распределением давлений по лопасти, увеличивают дисковое отношение, уменьшают относительную толщину лопасти, повышают давление на засасывающей стороне лопасти за счет погружения оси винта и т.п.
Для быстроходных судов (глиссирующие катера, катера на подводных крыльях и т.п.) во многих случаях не удается избежать кавитации гребных винтов, поэтому они оборудуются суперкавитирующими винтами (СКВ). Под суперкавитацией понимают сильно развитую вторую стадию кавитации, когда обтекание лопастей винта происходит со срывом струй и каверна уходит за пределы лопастей. Исходя из того, что при суперкавитации основная часть упора создается за счет давления на нагнетающей поверхности лопасти и форма засасывающей поверхности не играет существенной роли, СКВ имеют клиновидный профиль сечения лопасти и искривленную нагнетающую поверхность . Такая форма лопасти, с одной стороны, способствует образованию каверны оптимальных размеров, с другой — обладает наименьшим сопротивлением вращению гребного винта. В условиях суперкавитации такие винты обладают более высокими гидродинамическими качествами по сравнению с некавитирующими гребными винтами.
Конструктивной особенностью СКВ является также острая входящая кромка лопасти и смещение наибольшей толщины профиля к выходящей кромке. Клиновидные профили такой формы позволяют уменьшить толщину каверн, образующихся в междулопастном пространстве, снизить их взаимное влияние и тем самым повысить гидродинамические характеристики винта. СКВ имеют сравнительно небольшое дисковое отношение Θ = 0,40
0,55, узкие лопасти, их числоz = 2
3, что уменьшает возможность взаимного влияния каверн каждой лопастей.
+Положительные качества СКВ проявляются при работе их на расчетном режиме в условиях полностью развитой кавитации. Для режимов, отличных от расчетных, когда кавитация отсутствует или развита частично, происходит повышенное вихреобразование позади тупой выходящей кромки лопасти СКВ, вследствие чего его КПД становится ниже, чем у обычных винтов. Начиная с χ = 0,4 и выше, СКВ уже уступают обычным гребным винтам.
Пока усилия, развиваемые винтом, невелики, шум также сравнительно слабый. Он обусловлен нестационарным полем давлений в районе винта. При приближении к кавитации возникает характерный шум неопределенного тона, иногда называемый «хрюканьем», на которое он действительно похож. Природа шума такого рода подобна шуму чайника перед закипанием: из воды выделяется растворенный в ней воздух.
Кавитация винта сопровождается сильным шумом, который обусловлен как схлопыванием кавитационных пузырьков, так и колебаниями каверны при перемещении лопасти в поле переменных давлений. Чем меньше воздуха растворено в воде, тем сильнее шум. Интенсивность кавитационного шума зависит, в частности, от вида кавитационной каверны. Для оценки скорости судна, при которой появится сильный кавитационный шум, и интенсивности этого шума имеются приближенные формулы.
У некоторых винтов встречается шум другого рода — так называемое пение — равномерное гудение определенного тона, существующее в достаточно узком диапазоне скоростей хода. Оно вызывается автоколебаниями выходящих кромок лопастей, подобных трепетанию флагов на ветру, из-за схода вихрей с кромок (вихревая дорожка Кармана). Для избавления от «пения» достаточно чуть заострить выходящие кромки. Для изготовления винтов с большой откидкой лопастей (с сильно саблевидным контуром) применяют сплавы с большим внутренним сопротивлением, например марганцовистую бронзу «Соностон».
Вихрева́я доро́жка (также доро́жка Ка́рмана ) — цепочки вихрей, которые наблюдаются при обтекании жидкостью или газом протяжённых цилиндрических тел (или других линейно вытянутых плохо обтекаемых профилей) с продольной осью, перпендикулярной направлению движения сплошной среды.
Отрыв вихрей происходит с двух сторон тела поочерёдно; после срыва вихри образуют две цепочки позади тела, направление вращения вихрей в одной цепочке противоположно направлению вращения в другой.
Винты двухвинтовой ПЛ вращаются в противоположные стороны, чтобы не создавался кренящий момент.
При этом возможны два варианта: наружное вращение, когда на правом борту стоит правый, а на левом — левый винт, и внутреннее. В этом случае направление вращения влияет на КПД винтов: если винт раскручивает поток, закрученный корпусом (поток частично выходит из-под днища, частично — с бортов, приобретая окружные скорости), то КПД повышается, в противном случае — понижается. Изменение направления вращения может привести к заметному увеличению или уменьшению скорости хода судна, причем рациональное направление вращения устанавливается путем испытания модели судна. При эксплуатации предпочтительным считается наружное вращение, так как судно лучше слушается руля, к винту реже попадают плавающие предметы, например льдины.
Винты трехвинтовой ПЛ вращаются в разные стороны, при этом учитываются соображения, изложенные выше; средний винт может вращаться в любую сторону.
У четырехвинтового судна оба винта правого борта могут быть правого вращения, а левого борта — левого вращения, но возможны и иные варианты, что также определяется на основе испытаний модели судна.
Угол откидки лопастей— угол наклона лопасти относительно к оси вращения винта.
Может быть нулевым, как положительным, так и отрицательным.
Длительные исследования привели к изобретению безкавитационного винта (почти)...
Он имеет большой угол откидки (более 25 градусов от касательной к линии наибольших толщин в районе комля лопасти к касательной к этой же линии на краю лопасти), то есть "серповидный". Момент импульса, как следует из конструкции винта, у него большой (вода больше времени воспринимает давление от лопасти в следствие ее большей длины), значит и пропульсивный момент при ламинарном обтекании такой лопасти будет больше. А ламинарность потока, определяется числом Рейнольдса, за критическим значением которого наступает турбулентное течение (и кавитация, как следствие).
Число Рейнольдса можно рассматривать как отношение кинетической энергии жидкости к потерям энергии на характерной длине (ввиду внутреннего трения).
Если у потока число Рейнольдса многократно превышает критическое, то жидкость можно рассматривать как идеальную. В таком случае вязкостью жидкости можно пренебречь, так как толщина пограничного слоя мала по сравнению с характерным размером процесса, то есть силы вязкого трения существенны только в тонком слое, в потоке наблюдается развитая турбулентность.
Но так называемая «серповидность» лопастей имеет прямое отношение к вертикальным рулям и к течению жидкости, обтекающей корпус ПЛ.
Несколько слов о шумах, которые являются демаскирующим фактором.
Разделяются на широкополосные и узкополосные.
К широкополосным можно отнести первичное поле ПЛ, это— работающие гребные винты, механизмы и судовые системы, а также гидродинамический шум обтекания корпуса судна. Гребной винт при своем вращении передает корпусу судна усилия через подщипники валопровода и воду. Силы, передающиеся через подшипники валопровода, могут быть следствием механической или гидродинамической неуравновешенности гребного винта.
↓ Содержание ↓
↑ Свернуть ↑
| Следующая глава |