Страница произведения
Войти
Зарегистрироваться
Страница произведения

Роскон 2017. Атомный панк: война в космосе


Опубликован:
12.03.2017 — 03.04.2017
Читателей:
2
Аннотация:
Современная фантастика, как правило, не может показать интересный космос ближнего прицела. Его не знают, его не представляют, его не способны интересно описать читателю. Между убогими орбитальными керосиненшлепперами и антигравитационными вундерштернраумшиффами зияет пустота, не заполненная никем и никак.
Между тем, основной массив рабочих документов военных и гражданских космических агентств шестидесятых не только вполне убедительно показывает, как выглядит и на что в действительности способен атомный космос, но и в подавляющем большинстве случаев давно рассекречен.
Что же на самом деле скрывают архивы?
Предыдущая глава  
↓ Содержание ↓
↑ Свернуть ↑
  Следующая глава
 
 

Что ещё важнее, для лунных условий алюминий при горении в жидком кислороде становится пусть и плохоньким, но целиком местным ракетным топливом. Да, соотношение масс орбитальной лунной ракеты на алюминий-кислородном двигателе составляет не меньше 2,4. Возвращаемой многоразовой — 3,5. Но в обозримые сроки жизни постижимой нашим сознанием человеческой цивилизации это топливо на Луне просто не кончится.

То есть, вот совсем.

Лунный алюминий составляет от 10 до 18 процентов состава реголита. Для сравнения, лунный титан встречается далеко не везде, исключительно в составе титановых базальтов, а его высокой концентрацией считаются 6-8%

Самый простой лунный добывающий комплекс из примерно 30 тонн оборудования может производить в готовые к использованию лунные материалы буквально тоннами. Речь идёт о трёх многофункциональных колёсных машинах массой около тонны каждая, трёх наборах сырьевой разведки и паре трёхтонных экскаваторов. Неподвижную часть комплекса составят центральная электростанция на 60 киловатт, шесть солнечных печей площадью в 90 квадратных метров каждая, электрическое хозяйство, рудный сепаратор, криогенная установка сжижения кислорода, пресс, теплорадиаторы и набор из 4000 поставленных с Земли готовых вентилей для кислородных баллонов.

Расчётная деятельность одного такого комплекса принесёт около 2400 тонн материалов в год. 848 кубометров жидкого кислорода в штампованных на месте алюминиевых баках, 128 кубометров водяного льда в местных же алюминиевых контейнерах, 527 тонн металла сверх необходимого для изготовления тары (железо, алюминий, титан...), 480 тонн кремния, неизвестное (как повезёт) количество азота, редких металлов и летучих веществ и порядка 217 тонн шлака. Не исключено, что уже сразу в форме блоков.

Ну и наконец, стоит упомянуть лунный крип. Породу из калия, редкоземельных элементов и фосфора. Калий и фосфор — основа гидропоники, редкоземельные элементы — основа сложных высокотехнологичных материалов, а также хорошо знакомый любителям советской фантастики рубидий и лантаноиды.

Это, конечно, не значит, что проблем с добычей ресурсов не будет. Вовсе нет. Только вот и представлять Луну как бесполезную пустыню тоже не следует. Это крайне богатый и весьма удобно расположенный плацдарм, как для местного ресурсного снабжения ближнего космоса, так и для прыжка за дешёвыми космическими летучими веществами к Фобосу и Деймосу.

Космические углеводороды — это не только метан-кислородное ракетное топливо, но и дешёвый космический пластик. Один из самых востребованных современным человечеством материалов.

Цена перелёта с орбиты Луны на орбиту Марса при этом не сильно превышает цену перелёта в системе орбит Земли и Луны. Различается только время полёта.

Но отложим пока межпланетные вылеты. Давайте вернёмся к тому, что ещё сулит масштабное промышленное освоение Луны.

Примитивное орбиталище с имитацией бортовой силы тяжести вращением предлагали ещё в рамках "проекта Горизонт". Более сложные концепции достигли своего логического пика в середине 1970ых, когда Джерард О'Нил проработал основы конструкций долговременных орбитальных станций, пригодных для полноценной жизни двух тысяч человек, десяти тысяч, а потом и в несколько раз большего их количества.

Примечательны эти проекты в первую очередь тем, что в их основе реальные технологии своей эпохи без единого магического конструкционного материала. Любой проект О'Нила упирается преимущественно в транспортную проблему и минимальный размер лунной инфраструктуры необходимой для его строительства.

Заброс на Луну трёхсот квалифицированных строителей при технике и нескольких атомных энергостанциях позволял строительство преимущественно на местных ресурсах даже настоящей мега-структуры.

Для понимания масштаба — бублик диаметром в 200 метров и толщиной в 100 при массе около полумиллиона тонн может вместить тридцать тысяч жителей при 100 кубометрах на человека. При сокращении их численности втрое, жизнь на борту окажется примерно такой же комфортной, что и в хорошем "зелёном" пригороде. Скорость вращения при этом составит достаточно комфортные 3 оборота в минуту. При увеличении диаметра её можно понизить ещё сильнее, но это увеличит требования к размерам и массе радиационного щита. Для двухсотметровой станции масса защиты от космической радиации составит ещё порядка 375 тысяч тонн.

Кажется, что это всё очень много и очень сложно. Но если сравнить такое орбиталище, например, с мостом до Крыма, то внезапно окажется, что мост заметно больше и сложнее.

Если урезать размеры вдвое, до 100 метров диаметра на 50 метров толщины, в орбиталище смогут комфортно жить полторы тысячи человек, и до четырёх тысяч на пределе. Его масса составит 60 тысяч тонн, вместе с полной защитой — 180 тысяч тонн.

А теперь вернёмся к цифрам добычи одной лунной ресурсной станции массой около 26 тонн. 2400 тонн в год, из них 527 тонн — металл. Невероятно древняя, 1959 года разработки, лунная программа уже предусматривала более 300 тонн полезной нагрузки за считанные годы. Только при сохранении этого масштаба строительства, без его неминуемого роста, можно с удивлением заметить, что лунный проект способен в теории построить одну такую станцию за счёт преимущественно лунных ресурсов в пределах десятилетия.

С хорошим таким запасом способен.

Наращивание темпов строительства при этом упирается в основном в численность населения космоса. Да, изначальный транспортный порог высок и преодоление его дорого. Но затем жизнь в космосе начинает стремительно дешеветь.

Что же до методов решения транспортной проблемы...

Век большого Атома, таки да, имел сказать двох умных слов за транспортную проблэму!

III. Наш друг Атом: ядерные двигатели высокого удельного импульса и атомные импульсные взрыволёты. NERVA. Orion. Фактические результаты наземных испытаний. Доступные полётные задания и сроки перелётов. Прикладные аспекты жизни на борту и ходового ремонта силами экипажа.

Время перелёта на постоянном ускорении крайне мало. Два корня квадратных из дистанции поделенной на ускорение. Дельта V таких высокоэнергетических орбит измеряется во многих тысячах километров в секунду, и заметно сокращает время любого межпланетного перелёта.

Для 1g постоянного ускорения время полёта Земля-Марс составляет меньше пяти суток — если тот на другой стороне от Земли, разделённый с ней Солнцем. На среднем расстоянии в 225 миллионов километров полёт займёт полнедели. В июле 2018 года минимальное расстояние Земля-Марс составит жалкие 57,6 миллионов километров — и полёт на 1g постоянного ускорения не займёт и пары дней. Для расстояния Земля-Луна такой полёт уложится меньше чем в четыре часа. До Юпитера — около недели.

Одна маленькая проблема.

Нет у человечества таких двигателей, и в обозримое время не будет.

Для химического двигателя теоретический предел достижимого удельного импульса на отсутствующих в природе идеальных материалах и решениях — 500 секунд. Для сравнения — у ранее помянутого лунного двигателя на алюминии — 285 секунд. РД-253 — 316 секунд. У кислород-водородного двигателя RL-10 ракеты "Сатурн" — крайне эффективные 450-465 секунд.

Заметных улучшений здесь можно достичь лишь за счёт высокой скорости истечения рабочего тела. Добиться его можно только переходом с химической энергетики на заведомо лучшую атомную.

За этим в шестидесятые дело не стало.

Оба перспективных атомных двигателя эпохи, импульсный высокой тяги (Orion) и газовый термальный (NERVA), были достаточно подробно обсчитаны, частично построены в металле, и активно испытывались.

Могли они при этом очень и очень многое.

Технический предел удельного импульса газового термального двигателя типа NERVA составляет 850-900 секунд. Теоретический — до 1200, но таких конструкционных материалов у человечества не было в прошлом тысячелетии, и они не особо торопились появиться раньше нынешнего. Выдержать поток раскалённого до звёздных температур (3500-4000 К) водорода не так-то просто.

Тот газовый атомный двигатель, что построили в металле и опробовали на полигоне в любых режимах, включая критические до стадии физического расплавления и теплового взрыва, обладал удельным импульсом не менее 825 секунд.

В таком двигателе через раскалённую атомной реакцией активную зону пропускается криоводород. Так он получает очень большую энергию и стремительно покидает ракету.

Правда, есть и проблемы. Во-первых, соотношение тяги к массе у такого двигателя заведомо меньше единицы. То есть, для взлёта с планеты он не годится. Только для набора скорости в космосе, где тяга почти не важна.

Во-вторых, список актуальных недостатков, до устранения которых двигателем пользоваться затруднительно до полной невозможности, длиннее чем у "танка победы" Т-34.

Советский аналог РД-0410, к слову, показал себя не сильно лучше, хотя разрабатывался достаточно продолжительное время.

Дело в том, что срок жизни двигателя, в зависимости от рабочей температуры активной зоны, крайне ограничен. Речь идёт о считанных часах, а то и просто одном часе вообще. В результате, изделие подсознательно воспринимается многоразовым, но в реальности обладает сроком жизни примерно в один перегон туда-обратно. Для гарантии лучше бы и вовсе пользоваться многоступенчатой схемой и выбрасывать потерявший доверие агрегат хотя бы на полдороге.

Ограничено и количество включений-выключений. Нагрузка в этот момент достаточна, чтобы заметно сократить общий ресурс двигателя — суммарно пусков эдак в десять.

Сам водород стремительно портит материалы двигателя, тем более — при высоких температурах. Этот негативный эффект можно ограничить до приемлемых значений, если добавить в поток водорода стабилизирующий химический компонент, но он неминуемо понизит эффективность работы двигателя.

Схема выше подразумевает сохранение активной зоны как единого целого с минимальным "расходом" в процессе работы. Скромное количество атомного топлива позволяет в таких режимах совершать долгие перелёты с достаточно высокой эффективностью.

Но это не единственное решение. Стабильную активную зону можно заменить яростным инферно газообразного ядерного топлива в потоке водорода. Смесь раскалённого до звёздных температур радиоактивного газа повысит удельный импульс конструкции разика так в полтора и больше. Да, значительное количество ядерного топлива будет улетать безвозвратно в одном потоке с рабочим телом, а за ракетой останется многокилометровый радиоактивный хвост.

Но какой атомный панк устоит при выигрыше порядка 2500 секунд удельного импульса?

К тому же, при ста метрах от среза дюзы до капсулы экипажа смертельную дозу радиации может получить лишь тот, кто не защищён ничем и никак. Даже при высокоэнергетической орбите длиной порядка 40 дней в одну сторону до Марса, не говоря уже о более скромных.

Прослойка свинца в считанные сантиметры, топливные баки, аппаратные отсеки и всё остальное в предварительных расчётах снижали эту дозу минимум на два порядка..

Если увеличить расстояние дюза-отсек от ста метров до пары сотен, доза уже падает вдвое. Да, ракета станет похожа на степенно летящую вдаль Эйфелеву башню, но кого это волнует, кроме художника-иллюстратора, которому нужно как-то уместить её в кадре?

Гораздо неприятнее проблемы модернизации атомного двигателя ради взлёта с поверхности Земли. Возня со впрыском кислорода для обмена удельного импульса на тягу влечёт за собой массу инженерных трудностей и необходимость орбитальной дозаправки перед космическим перегоном на водороде. Попытки изготовить "ядерную лампу" и оставить раскалённый вихрь атомного горючего крутиться в прозрачной для тепла капсуле просто непосильны для технологий прошлого тысячелетия.

Но у этой проблемы тоже есть решение.

Проект "Орион" — вполне ровесник проекта "Ровер", в рамках которого создавали NERVA и всех его предшественников и последователей.

Первые работы с импульсным ядерным двигателем начались ещё в конце пятидесятых. Моделька гулко бахала зарядами обычной взрывчатки, прикольно колбасилась на привязи и после устранения ряда совсем уж терминальных просчётов с балансом и рабочей частотой начала выглядеть более чем реализуемой схемой атомной ракеты.

Даже очень слабый ядерный взрыв за кормой сообщает крайне увесистому космическому аппарату довольно большую скорость за каждый "пинок в зад".

Слабенькие, от полукилотонны до пяти килотонн, разгонные заряды поднимали бы космический аппарат вполне корабельной массы (4000 тонн) сначала в стратосферу — при частоте два полукилотонных взрыва каждую секунду, потом на стабильную трёхсотмильную орбиту.

Повышение мощности зарядов диктовалось в основном крайне приблизительным знанием того, как повысить количество рабочего тела на опорной плите взрыволёта, когда тот выйдет из плотных слоёв атмосферы.

Работы по созданию атомного боеприпаса направленного взрыва для большей эффективности двигателя, с 2-3 тысяч секунд удельного импульса до 5-6 тысяч, вообще оказались настолько интересной для военных темой, что надолго пережили все работы по самому "Ориону".

Впрочем, об этом позже.

Сейчас нас куда больше интересуют практические нюансы воплощения идиоматического выражения "Иисус Христос на палке-скакалке" в металле. Изделие массой 4000 тонн поднимало бы в космос 1600 тонн полезной нагрузки за один взлёт. Это примерно четыре современных международных космических станции, или вся полезная нагрузка пяти ранее помянутых лунных программ.

Всё удовольствие — ценой полумегатонны очень слабых, и потому, крайне чистых зарядов. Да, обеспечение предельной чистоты срабатывания и максимально полного "сгорания" атомного боеприпаса оказалось вторым побочным и крайне полезным эффектом работ над "Орионом".

Скорость полёта разогнанного атомным взрывом рабочего тела настолько велика, что опорная плита взрыволёта переживает воздействие струи почти моментально, но лишь считанные доли секунды. Сотней-другой метров расстояния между эпицентром и "Орионом" можно пренебречь в том, что касается времени получения импульса, но именно она становится лучшей защитой от радиации и предельной тепловой нагрузки.

В наземных ядерных испытаниях металлические образцы с минимальной защитой графитовой смазкой выдерживали куда более мощные (на порядки) атомные и термоядерные взрывы. Обычной смазки рабочей поверхности вполне достаточно, чтобы достаточно тонкая металлическая плита без проблем работала весь период активного разгона или торможения.

Прослойка газовых мешков низкого давления обеспечивала первичное разнесение импульса по времени. Вторая опорная плита и гидравлические тормоза — вторичное. Рабочие перегрузки сокращались до примерно 2g при максимальной загрузке, и могли достигать 4g при неполной.

Да, экипаж "немного потряхивало". Но и выигрыш по массе полезной нагрузки того заведомо стоил. При удельном импульсе порядка 2500 секунд одноступенчатый "Орион" мог сгонять до Марса и обратно за 160 суток и доставить порядка 10% собственной массы в форме полезной нагрузки. По медленным орбитам грузовой "Орион" запросто довозил хоть марсианскую базу или орбитальную станцию.

Предыдущая глава  
↓ Содержание ↓
↑ Свернуть ↑
  Следующая глава



Иные расы и виды существ 11 списков
Ангелы (Произведений: 91)
Оборотни (Произведений: 181)
Орки, гоблины, гномы, назгулы, тролли (Произведений: 41)
Эльфы, эльфы-полукровки, дроу (Произведений: 230)
Привидения, призраки, полтергейсты, духи (Произведений: 74)
Боги, полубоги, божественные сущности (Произведений: 165)
Вампиры (Произведений: 241)
Демоны (Произведений: 265)
Драконы (Произведений: 164)
Особенная раса, вид (созданные автором) (Произведений: 122)
Редкие расы (но не авторские) (Произведений: 107)
Профессии, занятия, стили жизни 8 списков
Внутренний мир человека. Мысли и жизнь 4 списка
Миры фэнтези и фантастики: каноны, апокрифы, смешение жанров 7 списков
О взаимоотношениях 7 списков
Герои 13 списков
Земля 6 списков
Альтернативная история (Произведений: 213)
Аномальные зоны (Произведений: 73)
Городские истории (Произведений: 306)
Исторические фантазии (Произведений: 98)
Постапокалиптика (Произведений: 104)
Стилизации и этнические мотивы (Произведений: 130)
Попадалово 5 списков
Противостояние 9 списков
О чувствах 3 списка
Следующее поколение 4 списка
Детское фэнтези (Произведений: 39)
Для самых маленьких (Произведений: 34)
О животных (Произведений: 48)
Поучительные сказки, притчи (Произведений: 82)
Закрыть
Закрыть
Закрыть
↑ Вверх