Страница произведения
Войти
Зарегистрироваться
Страница произведения

До и после Победы. Книга 3. Перелом. Часть 2


Статус:
Закончен
Опубликован:
25.05.2018 — 25.05.2018
Читателей:
1
Аннотация:
Вынесены главы 24-50
Предыдущая глава  
↓ Содержание ↓
  Следующая глава
 
 

Сглаживание сигналов также было одной из работ операционников. Особенно они были полезны для сглаживания низкочастотных сигналов, так как, если бы сглаживание делали на фильтрах, то они получались бы очень громоздкими, с малым уровнем выходного напряжения, да к тому же они вносят фазовые искажения за счет запаздывания выходного сигнала при прохождении через фильтр. Что самое замечательное — "смена деятельности" конкретного операционника выполнялось перестановкой пассивных элементов. Так, если в дифференциаторе в обратную связь включается резистор, а в интеграторе — конденсатор, то в сглаживателе — включенные параллельно резистор и конденсатор, с помощью которых подбирают постоянную времени сглаживания, то есть будут сглаживаться те сигналы, чья длительность окажется меньше времени этой постоянной. А остальная электронная схема остается без изменений. Сглаживающие операционники широко применялись в тех же системах наведения ракет — схемы сглаживания с компенсацией запаздывания позволяли сглаживать случайные колебания в сигналах управления, вызванные неравномерным вращением рукояток, и вместе с тем управляющий сигнал подавался на выход практически без задержки, что уменьшало величину динамической ошибки — компенсацию запаздывания выполняла схема дифференцирования, которая выдавала на выход начальный скачок напряжения, почти равный окончательному напряжению, которое устанавливалось после сглаживания — к лету сорок второго наши разработчики систем управления уже переходили на стадию волшебства, хакерства, когда подобными хитрыми и одновременно простыми методами можно было существенно улучшить работу систем и повысить их эффективность. А у меня появлялось ощущение, что мы вместо цифровой эры входим в эру аналоговых вычислений.

— — —

Это меня не радовало, так как я-то рассчитывал на милую мне "цифру", и возиться с, условно говоря, "патефонными пластинками" вместо "mp3" мне как-то не хотелось. Нет, в детстве я пластинками пользовался довольно часто, но уже давно был избалован цифровыми технологиями, и послушать пластинки мог бы только в качестве экзотики да ностальгии, но не более того. "Теплый цифровой файл" был мне гораздо милее.

Но вместе с тем, наши аналоговые блоки делали все, что было нужно инженерам. Так чего еще желать ? Операционные усилители позволяли выполнять разнообразные функции — сложение, вычитание, умножение, деление, интегрирование, дифференцирование, логарифмические операции — и каждая операция требовала в среднем шести-восьми ламп. А несколько блоков, соединенных в последовательности обработки сигналов, реализовывали алгоритм, который в случае применения цифровых машин требовал тысяч транзисторов и десятков, а то и сотен корпусов наших микросхем — даже если реализовывать его аппаратно. Да, цифровая ЭВМ в общем случае была более универсальна, обеспечивала более высокую точность, но за счет этой чертовой простоты операционников их можно было просто скомпоновать в нужном порядке, заложив в него нужный алгоритм — и мы получали то же самое с меньшими затратами — одна ЭВМ ведь не сможет одновременно обрабатывать несколько алгоритмов, а схемы на операционниках — более чем, причем с гораздо меньшими аппаратными затратами.

Я был, мягко говоря, удручен — столько сил потратить на разработку и проектирование цифровых машин, чтобы получить такой удар под дых. Да еще от кого ? От автоматизаторов, которых я поначалу чуть ли не насильно заставлял заниматься именно автоматизацией технологических процессов и расчетов, предполагая, что в скором времени получу большое количество обученных кадров. И вот эти "кадры" массово начали применять эти аналоговые "вычислительные" блоки, которые только и делали, что преобразовывали сигналы по нужному закону.

Технари научились моделировать и довольно сложные функции управляющих сигналов — делали их кусочно-линейную апроксимацию схемами на операционниках и диодах с резисторной обвязкой функций — каждым таким сочетанием операционник-диод реализовывали один из кусков функции, так что порой конструкция содержала до двадцати блоков. Но это никого не смущало — для радиотехников мы уже выпускали макетные печатные платы, где под радиоэлементы были насверлены и омеднены поля отверстий, так разработчики аналоговой управляющей и вычислительной техники довольно быстро приспособили эти платы под свои нужды, отлаживая на них свои схемы.

И получалось это у них уже довольно ловко. В подробности я не вдавался, мне было достаточно радостного вида конструкторов, которые мне взахлеб объясняли, что "для каждого уравнения мы просто составляем цепочку интегрирующих операционных усилителей, последовательно понижающих порядок производной" — что бы это ни значило, зачем понижать порядок и сколько их всего — я был не в курсе, так как занимался этими вещами двадцать лет назад и все успешно подзабыл. Хотя, насчет порядков — мне как-то с восторгом рассказывали об уравнениях шестьдесят седьмого порядка. Откуда они набрали столько порядков, для меня было загадкой — может, просто по количеству переменных ? Но вот что я уловил, так это то, что они задействовали шестьдесят семь операционников, работавших по схеме дифференцирования. Вот это я понимал, "что угодно", измеряемое в штуках — это мое.

— Операционников-то хватает ?

— Да, более чем ...

— Ну и отлично.

Проявил "заботу", выслушал, операционниками обеспечил, над душой не висит — чего еще от начальства надо ? Умение вовремя смыться ! Но в полной мере им я еще не овладел, поэтому продолжаю слушать:

— Затем на входе цепочек задаются константы, а функция, относительно которой выполняется решение уравнения, задается в блоке нелинейности, который выдает нужное значение в зависимости от аргумента — поданного на его вход напряжения.

Да, про эти блоки нелинейности я тоже могу порассказать уже немало — сам участвовал не в одном заседании технического комитета. Блоки представляют собой схемы с разным набором элементов — смотря как удастся реализовать — как правило, это наборы блоков кусочной апроксимации, генераторы сигналов, а то и просто сигнал, записанный на магнитную ленту — последнее особенно часто применялось для отладки различных изделий — тех же зенитных ракет, когда запись телеметрии и была исходным сигналом, или запись крутильных колебаний коленвалов, или давление в камере сгорания. Народ буквально дорвался до простого и вместе с тем мощного инструмента моделирования процессов, а мне приходилось наступать самому себе на горло — если на разработке цифровых программ и библиотек работало всего триста человек, то аналоговыми моделями занималось более пяти тысяч. Причем — с перспективой дальнейшего роста аналоговой составляющей. Немного успокаивало лишь то, что на аналоге прорабатывались математические модели, которые мы понемногу переносили и на цифру, и даже намечалось какое-то сотрудничество между двумя ветками моделирования — цифровики уже помогли аналоговикам найти пару косяков в их моделях. Но пока соотношение аппаратуры просто не позволяло увеличивать долю цифры — если по цифровым ЭВМ у нас имелось семьдесят три вычислительные машины разрядностью от четырех до шестнадцати бит и общей производительностью три миллиона операций с фиксированной точкой в секунду, то аналоговых моделей было уже семь сотен, с производительностью, если пересчитывать на фиксированную точку, в сто шестьдесят миллионов операций в секунду. И всего-то пятьдесят тысяч ламп. Казалось бы — при недостатке раций, все лампы надо тратить на связь. Но тогда мы не сможем развивать науку и технологии — задавят, не одни, так другие. Так что мы "просто" наращивали количество линий по выпуску радиоламп, и к лету сорок третьего довели производство уже до десяти тысяч ламп в сутки, а с учетом моделей, в которых в одной колбе было совмещено два-три тетрода, пентода или диода, выпуск активных элементов достигал уже двенадцати тысяч. Вот только из этого количества для операционников подходило хорошо если триста штук — стабильность ламп еще оставляла желать лучшего. Да и из этих трехсот что-то надо было оставить для дальнобойных радиостанций и РЛС, остальное же шло на обычные радиостанции, причем нестабильность ламп приходилось компенсировать схемотехникой и кварцами.

Причем, с наращиванием объема выпуска операционников принципы построения схем изменялись. Так, если поначалу народ старался сэкономить количество использующихся в схемах операционников и пытался реализовать нужные передаточные функции на одном операционнике с помощью хитроумной обвязки — сложной схемы из резисторов, конденсаторов, диодов, то чем дальше, тем все больше люди переставали заморачиваться над оптимизацией и поиском хитрых решений, а тупо добавляли еще операционников. "Старики", которые начинали все эти работы чуть менее года назад, порой ворчали на "молодых" — вот мол, не используют всех возможностей. Но в итоге получалось, что быстрее напихать новых операционников с относительно простой, фактически стандартной, обвязкой, чем пытаться составить хитрую схему — хитрые схемы могли составлять далеко не все, а по мере того, как конструктора входили во вкус, моделей требовалось все больше и больше, и составить реализующие их схемы из кубиков получалось у гораздо большего количества людей. И как-то эта тенденция уж больно напоминала мне ситуацию с программированием в мое время. Естественно, я помалкивал — если аппаратуру мы худо-бедно сделаем в нужном количестве, то вот сделать опытных проектировщиков уже не получится — они должны расти сами, мы лишь можем помочь — организацией труда и обмена опытом. К тому же второй подход обычно позволял отлаживать модели по частям, тогда как в первом сложные взаимосвязи требовали очень кропотливой отладки, которую никак было не распараллелить.

Но у меня была надежда на относительно скорую победу цифры — тогда как аналоговая техника требовала использования электронных ламп, цифровая у нас работала уже на интегральных схемах. Пусть каждый корпус содержал два-три логических вентиля или сумматор, но эта рассыпуха позволяла создавать уже довольно плотную компоновку. С применением же транзисторов в аналоговой технике все было не так гладко — мы пока не смогли получить стабильных характеристик даже в дискретных транзисторах, не говоря уж о микросхемах — большие шумы, нестабильность рабочих точек, индивидуальность параметров каждого транзистора — все это мешали массовому применению полупроводников в аналоговой технике — что для связи, что для моделирования — даже если удавалось настроить какую-то схему, то через некоторое время рабочие точки транзисторов начинали плыть и приходилось делать донастройку. Транзисторы же, работающие в режиме ключа, функционировали достаточно стабильно — запас по запирающим напряжениям позволял перекрыть разброс параметров каждого конкретного транзистора, присутствовавшего на пластине.

Правда, пока все-таки были и сомнения — кто кого. Эти гадские энтузиасты разрабатывали схемы не только под конкретные модели, но уже запускали в производство второй вариант перенастраиваемого устройства, которое можно было считать относительно универсальной аналоговой вычислительной машиной. Первый вариант имел двадцать операционников, два блока перемножения двух переменных, шесть нелинейных диодных блоков для линейно-кусочной апроксимации одной функции, тридцать потенциометров для задания переменных, и четыре гнезда для подключения блоков расширения, а последовательное либо параллельное включение других таких же машин позволяло настраивать модели буквально неограниченных размеров. Причем интегрирование с погрешностью в один процент выполнялось всего за сто секунд, а если настроить деление, то за это же время оно даст максимальную погрешность в семь процентов. С панелью для настройки проводами на штекерах, рукоятками задания переменных, лампочками, дополнительными стойками для самописцев, эта конструкция была похожа на вполне нормальную малую ЭВМ шестидесятых годов. Правда, мы ее назвали Интеграционной Машиной — ИМ-1 — может, кого и обманем, вдруг подумают, что она механическая, да и заранее наводить на вычислительные машины не хотелось.

Вторая версия ИМ имела уже тридцать операционников и позволяла проводить одновременно шесть операций интегрирования с одновременным суммированием, шесть сложений или вычитаний, две операции перемножения переменных или возведения в квадрат или деления или извлечения квадратного корня, десять логических операций, а задавать позволяла уже две кусочно-апроксимированные функции, пятьдесят переменных, ну и подключаемые внешние блоки еще больше расширяли ее возможности — в зависимости от их возможностей по генерации и обработке сигналов. А а подключение нескольких машин превращало их в настоящую Звезду Смерти. Улучшенная схемотехника операционных усилителей обеспечивала максимальное время интегрирования в миллион секунд — то есть аппарат мог интегрировать сигнал в течение почти двух лет. Минимальное время интегрирования составляло сорок микросекунд при ошибке в пять процентов, а ошибку в один процент, то есть приемлемый результат, она выдавала за сто микросекунд, то есть в секунду она могла проводить десять операций интегрирования с точностью, достаточной почти для любых применений. Природа говорила на языке дифференциальных уравнений, и мы создавали механических помощников, чтобы сказать ей, чего мы от нее хотим.

А энтузиасты готовили уже третью версию, где сменные панели позволяли набирать "программу" отдельно, пока аппарат обрабатывает другую программу, а наличие переключающих блоков позволяло выполнять даже условные переходы. Интересно, сколько я еще будут терпеть такое аналоговое непотребство ? Наверное, столько, сколько придется — аналоговики уже "отработали" все свои увлечения на сто лет вперед. Одна схема автоматической запайки стеклянных колб экономила нам ежедневно две тысячи человеко-часов. Ведь колбу от стеклянной трубки, ведущей к вакуумному насосу, надо отпаивать по нелинейному закону — сначала прогреть место соединения, затем — усилить нагрев, и когда стекло начнет плавиться и сдавливаться атмосферным давлением, снова уменьшить нагрев. И все это — еще в зависимости от марки стекла, температуры окружающего воздуха, температуры и плотности газа. Вот разработка такого аппарата, а также аппарата припайки колбы к трубкам вакуумого насоса, обновление самих трубок — все это позволило разработать и роторную линию по откачке электронных ламп. Пока мы сделали только две таких роторно-конвейерных линии, но, кажется, скоро мы сможем есть лампы чем только захотим.

ГЛАВА 8.

А ламп в скором времени потребуется все больше и больше — мы ведь и в других областях также постепенно вводили автоматическое управление, оставляя человеку только функции контроля и наладки. Так, в производстве нитроглицерина сначала ввели единый операторский щит, на который вывели показатели скорости потоков исходных и конечных веществ в контрольных сечениях, температуру в контрольных точках, а также управляющие потенциометры, чтобы с этого же рабочего места можно было управлять насосами и задвижками, которые увеличивают или уменьшают подачу реагентов и охлаждающей жидкости. Затем, по уравнениям массо— и теплообмена составили математическую модель работы нитроглицеринового реактора, конструктора собрали и наладили соответствующую ей схему и мы запараллелили ее работу с работой оператора — оператор крутил рукоятки управления вручную, а электронная модель на операционниках крутила электромоторчиками свои рукоятки на соседнем щите, не подключенном к исполнительным механизмам — отлаживали ее работу, сравнивая положения рукояток на рабочем и тестовом щитах.

123 ... 910111213 ... 434445
Предыдущая глава  
↓ Содержание ↓
  Следующая глава



Иные расы и виды существ 11 списков
Ангелы (Произведений: 91)
Оборотни (Произведений: 181)
Орки, гоблины, гномы, назгулы, тролли (Произведений: 41)
Эльфы, эльфы-полукровки, дроу (Произведений: 230)
Привидения, призраки, полтергейсты, духи (Произведений: 74)
Боги, полубоги, божественные сущности (Произведений: 165)
Вампиры (Произведений: 241)
Демоны (Произведений: 265)
Драконы (Произведений: 164)
Особенная раса, вид (созданные автором) (Произведений: 122)
Редкие расы (но не авторские) (Произведений: 107)
Профессии, занятия, стили жизни 8 списков
Внутренний мир человека. Мысли и жизнь 4 списка
Миры фэнтези и фантастики: каноны, апокрифы, смешение жанров 7 списков
О взаимоотношениях 7 списков
Герои 13 списков
Земля 6 списков
Альтернативная история (Произведений: 213)
Аномальные зоны (Произведений: 73)
Городские истории (Произведений: 306)
Исторические фантазии (Произведений: 98)
Постапокалиптика (Произведений: 104)
Стилизации и этнические мотивы (Произведений: 130)
Попадалово 5 списков
Противостояние 9 списков
О чувствах 3 списка
Следующее поколение 4 списка
Детское фэнтези (Произведений: 39)
Для самых маленьких (Произведений: 34)
О животных (Произведений: 48)
Поучительные сказки, притчи (Произведений: 82)
Закрыть
Закрыть
Закрыть
↑ Вверх