Предыдущая глава |
↓ Содержание ↓
↑ Свернуть ↑
| Следующая глава |
Но это еще ничего. На экспериментальной установке по непрерывной разливке стали с управляемой кристаллизацией с помощью ультразвука вдруг застопорилась подача расходного ультразвукового волновода — проволоки, которая и "подавала" в желоб расплавленного металла ультразвуковые колебания, заодно расплавляясь там сама — жертвовала собой, чтобы уменьшить осевую ликвацию за счет уменьшения температуры, которую она отбирала на свое расплавление, а за счет передаваемого ею же, пока не расплавилась, ультразвука — ускоряла дегазацию и уменьшала размер образующихся зерен. Сама по себе технология выглядела как настоящая алхимия, только работала — та же танковая броня, созданная по этой технологии, была в среднем на восемь процентов прочнее, в зависимости от сплава. Правда, пока она отливалась периодической, не непрерывной отливкой, и в ограниченных количествах, так что ее хватало только для танков прорыва, да и то только для брони передней проекции. Но и это сэкономило нам две тонны веса, так что немцев в скором времени ждал небольшой сюрприз — мы пока не выпускали наших зверьков, чтобы не спугнуть фрица раньше времени. Но перспективное направление надо было развивать — применение ультразвука в электрошлаковой сварке давало просто превосходные результаты, и нам хотелось распространить эту технологию и на материалы для самих конструкций танков, а не только на соединительные швы. Поэтому опыты велись днем и ночью, и вот, в один отнюдь не прекрасный момент, проволока перестает подаваться в перемещающийся по охладителю расплав, тот, естественно, остывает медленнее и доползает-таки до прокатного стана в виде бруска, но еще с жидкой сердцевиной. Прокатный стан его хрумкает, ломает затвердевшие стенки — и жидкий металл начинает изливаться на все что ни попадя. Никто не пострадал, но стан восстанавливали три дня.
И подобные вещи случались все чаще, так что мужики сказали "Ага ... !" и начали дружно вводить цепи обратной сигнализации.
Собственно, в аппаратуру уже начинали встраивать средства контроля — прикладываемое усилие, превышение по температуре, разница давлений до и после фильтра. Эти параметры уже использовались для сигнализации о "здоровье" агрегата — скажем, если разница давлений воздуха перед фильтром и после него становилась больше определенной оператором величины, то фильтр можно было считать засорившимся. Или, если усилия на мельничных жерновах возрастали, значит, либо увеличилась твердость породы, либо износились насечки на жерновах. Но в любом случае надо как минимум уменьшить подачу материала для размола — этот-то сигнал и подавался на один из выходов мельницы. Соответственно, если в питающем бункере сделать вход, управлявший скоростью ссыпания материала, и завести на него этот выход с мельницы, то таким образом можно дополнительно управлять периодом и амплитудой колебаний виброжелоба — подача материала на мельницу изменится.
Вот эти-то обратные связи и начали массово встраивать в технику — всего-то и надо добавить на вход дифференцирующий операционник, чтобы его сигнал складывался с управляющим сигналом самого агрегата — увеличилось входное напряжение, операционник отследил это увеличение — и внес поправку в работу своего агрегата — двигатель стал вращаться медленнее. Причем, если сигнал увеличился сильнее, то и поправка больше, соответственно и подача материала уменьшится резче. Ну а если последующий агрегат разобрался со своими проблемами — сам или с помощью оператора, то его выходной сигнал уменьшится, входной операционник воспримет это изменение как команду "Наподдай ! Чего телишься ?" — и двигатель станет вращаться быстрее. На одном этом производительность нашего лабораторного оборудования возросла на тридцать процентов, а несколько производственных конвейеров подготовки материалов дали прирост уже в пятьдесят семь процентов — просто они работали больше времени в течение суток. И все за счет такого гибкого управления — тут ведь уже управлял не медленный оператор, который пока отследит показатели приборов, пока сообразит, что надо сделать, пока покрутит рукоятки — нет, электроника позволяла выжимать каждую секунду буквально крохи, но, складываясь, эти крохи давали ощутимый прирост производительности. Вот если бы автоматика еще бы и не ломалась — цены бы ей не было. А так мы пока не уменьшали выпуск оборудования — не было времени ждать взросления новых технологий, материалы были нужны сейчас. Так что, несмотря на поломки и сбои в работе, средняя выработка росла — новая техника пока работала на уровне старой прежде всего из-за сбоев, а выработка росла за счет ввода в строй новых агрегатов.
И количество таких автоматизированных линий, в которых отдельные агрегаты общались между собой, постоянно росло. В той же установке по непрерывной разливке стали конструктора добавили контролеры непрерывности подаваемой проволоки, чтобы отлавливать ее обрывы, контролер усилия подачи, чтобы отследить — не уткнулась ли она куда, контролеры температуры — и эти сигналы завели на систему охлаждения, которая увеличивала подачу охлаждающей жидкости в полости желобов, куда выливалась сталь, чтобы те интенсивнее охлаждали застывающую в них сталь в случае проблем с подачей проволоки. Конечно, структура металла будет уже не та, но хотя бы обойдемся без аварий. Одновременно притормаживался выпуск стали на разливку, так что и остывающий объем уменьшался, а уж останавливать ли разливку совсем — это решал оператор, так как могла быть временная задержка, и лучше пометить неудачный участок, по команде оператора вдавив в его начало и конец железные штыри, по которым потом его и вырежут, а мог быть и выход проволоки из направляющих, и тогда ее надо будет обрубить, заправить обратно, и уж тогда снова пускать разливку стали.
Но и необходимость прямой, по ходу обработки, связи скоро стала очевидной. Для тех же связок фильтр-насос, когда проходимость газа через фильтр постепенно ухудшалась из-за забивания фильтра, он подавал на насос сигнал увеличить тягу — собственно, этот сигнал и был разницей давлений до и после фильтра.
Таким образом наши доселе разрозненные устройства, связанные между собой лишь желобами и трубами, передававшими по цепочке обрабатываемый материал и технологические жидкости и газы, стали организовываться в некое подобие живого организма с собственной нервной системой. И, хотя пока части этой системы оставались довольно независимыми, без центрального мозга, они уже начинали работать в связке, демонстрировать "командный дух", "нацеленность на общий результат", проявлять заботу не только о себе, но и о своих коллегах. Соборность.
ГЛАВА 10.
А конструктора продолжали автоматизировать операции. Еще когда мы проектировали первые автоматизированные механизмы по обработке веществ, где-то на горизонте маячила проблема смены емкостей. Их мог менять только человек — вытащить наполненную обработанным веществом, вставить новую, дождаться окончания работы, повторить. Сотни и тысячи раз. Да, на некоторых технологических процессах обработка могла вестись непрерывно, но во многих, особенно в лабораторных исследованиях, действия были дискретными. Таким образом, даже если автоматизируем саму обработку, то есть разберемся с одним узким местом, мы все-равно оставляем другое узкое место. Поэтому в начале сорок третьего на бирже проектов стали появляться задания по автоматизации смены дискретных элементов — контейнеров, заготовок, колб и пробирок — для каждого аппарата — свое задание. И аппаратов было уже много, и просматривалось увеличение их номенклатуры, так что у конструкторов появлялось новое поле деятельности, где они смогут заработать дополнительные баллы и тем самым повысить свои возможности и влияние.
Конструктора ведь сделали роботизированный манипулятор ! Взять ту же смену емкостей для отстаивания взвесей. Сначала они пытались сделать жесткую систему — захват въезжает в гнездо, где установлена емкость, которую необходимо вытащить, сдвигает клешни, приподнимает колбу, вытаскивая ее из гнезда, затем выносит назад, за пределы поворотного стола, в котором установлены колбы, и затем относит на поднос. Проблемы были как раз с надежным вытаскиванием колбы, даже с установкой на свободную позицию подноса они справились быстрее. Сама позиция отсчитывалась двумя цифровыми счетчиками — счетчик рядов и счетчик позиции в каждом ряду. Их значения заводились на АЦП и с ними сравнивались значения, приходящие от проволочных резисторов, протянутых вдоль обеих направляющих аппарата — тот отводил руку назад, пока не достигнет позиции в ряду, и затем двигал ее вбок, пока не будет достигнут нужный ряд. Ну и затем запускалась схема опускания колбы — тут работал третий проволочный резистор, отмеривавший высоту, и даже если аппарат не доносил колбу до поверхности, ничего страшного не случалось — ну, упадет с высоты в пару сантиметров — не расколется.
А вот надежно захватить колбу все никак не удавалось, колбы стояли в гнездах с некоторым разбросом относительно оси гнезда, иначе их было бы сложно опускать смесителю, и из-за этого было сложно отрегулировать степень сжатия клешней — получалось то слишком слабо, так что колба все выпадала, когда ее пытались подхватить, то слишком сильно, так что иногда она раскалывалась. В группе, разрабатывавшей эту конструкцию, тоже произошел раскол. Большинство выступало за перепроектирование самого поворотного стола, и тогда схема работы существенно упрощалась — колбу уже не надо было поднимать. Но было трое человек, что выступали за увеличение степеней свободы захвата. Да, первый вариант был проще, по нему на техническом комитете и выделили ресурсы на дальнейшую разработку — материалы, станочное время, человеко-часы слесарей и фрезеровщиков трех квалификационных классов — работы предстояли разные по степени сложности. Но и второй вариант мне чем-то запал в сердце, что-то он мне навевал до боли знакомое, поэтому, несмотря на общее мнение о его бесперспективности на данном этапе, я все-таки выступил поручителем по данному решению, благо научных баллов набрал уже немеряно. Народ поскрипел, но ресурсы также выделил — другому, может, и отказали бы вопреки принятым положениям о научно-конструкторской деятельности, сославшись на военное время, нехватку ресурсов и прочие вполне разумные причины, но только не мне, с моим административным весом. Тем более что я бросал его на весы обсуждения нечасто, так что люди относились к этому моменту терпимо — "Ну, видимо опять что-то придумал".
Так что, пока "меньшевики" работали над своей конструкцией, основная группа разработала элегантную систему автоматизированной смены колб. Они просто поменяли конструкцию поворотного стола, который подавал колбы в смесительный аппарат — сделали у гнезда плоское дно, так что колбу теперь не требовалось поднимать, добавили выталкиватель колбы, расположенный внутри периметра поворотного стола, а принимал колбу виброжелоб, по которому она соскальзывала на поднос — плоское дно колбы и высокие стенки желоба не давали ей завалиться. После переноса очередной колбы желоб смещался на одну позицию влево, а когда доходил до последней позиции в ряду, поднос сдвигался на один ряд, а желоб переходил в крайнюю правую и был готов принять следующую колбу.
Конструкция вышла значительно более простая и надежная. Ну еще бы — за основу была взята идея роторных линий с их жесткими схемами передачи обрабатываемой детали от позиции к позиции, виброжелоба тоже у нас уже были, и потребовалось "лишь" разработать схему отсчета позиции, в которую надо поставить очередную колбу. Так что свои баллы группа получила заслуженно, но проект мы оставили открытым, так как у нас появилась догадка, что сами аппараты надо сразу проектировать с учетом последующего автоматического перемещения результатов их работы на следующий участок. Взять тот же поворотный стол — изначально мы сделали его с глубокими гнездами, и уже при работе над автоматизацией смены колб пришли к мнению, что их надо делать плоскими. Вот подобные моменты и хотелось бы выявлять на самых ранних этапах разработки оборудования. Как именно это выявлять, пока было непонятно — система сопряжения агрегатов между собой тоже только сейчас начала зарождаться. Было лишь понятно, что мало выполнить обработку, надо потом куда-то переместить продукт. И не факт, что именно на поднос. Но вот куда — это еще предстояло придумать, может, сразу в другой аппарат — посмотрим, что будет получаться.
И, пока еще несколько групп и отдельных исследователей подхватывали все новые проекты, "моя" группа работала над манипулятором. Вскоре я сообразил, что они предложили разработать — ни много ни мало — роботизированный манипулятор. Мне и самому было интересно, как это у них получится, без нормальных компьютеров-то ... А они и не догадывались, что для этого нужны компьютеры, поэтому работали взахлеб. Решая проблемы одну за другой. Так, надежно захватывать колбу им удалось после того, как поставили обратную связь по усилию сжатия — если оно было недостаточным, насос подкачивал воздух в пневмоцилиндры правого или левого тросика, которые и сводили захваты — воздух одновременно и создавал усилие, и был демпфером, предотвращая излишнее сдавливание колбы. Одного тросика на обе клешни тоже оказалось маловато — рука не всегда ориентировалась точно по центру колбы, и когда обе клешни начинали синхронно сдвигаться, колбу в лучшем случае накреняло одной из клешней, а могло и расколоть. А так — каждая клешня в конце концов упиралась в колбу с нужным усилием, причем мостовая схема выравнивала усилия — если какая-то клешня упиралась сильнее, то заслонка направляла больше воздуха от насоса в цилиндр другой клешни — схема была примитивнейшая, но работала. Причем — все было сделано на аналоговых схемах, безо всяких компьютеров. Ну, да — операционники делали вычисления — то же дифференцирование по усилию, чтобы потом плавно менять давление в цилиндрах.
Собственно, после этого все наконец-то уверовали в работоспособность схемы, хотя точно так же все было ясно, что конструкция первой группы более экономична и надежна. Но моих "меньшевиков" это не останавливало — ведь я сам их подзуживал на усложнение конструкции — мне хотелось понять, чего мы можем достичь на уровне доступной нам техники, так как массовые компьютеры еще только проглядывались в далекой перспективе, а заполучить манипуляторы, чтобы народ набил руку на работе с ними, хотелось бы как можно раньше. Так, вскоре мы добавили контроль глубины вдвижения манипулятора — иногда он задвигался вглубь гнезда слишком сильно и также в лучшем случае наклонял колбу, а в худшем — она опять же растрескивалась. Это пока мы не догадались использовать металлические емкости — привыкли, понимаешь, что в лабораториях применяется в основном стеклянная посуда, да и было ее уже как грязи — несколько роторных линий прессовали ее из размягченного стекла сотнями штук в день.
В общем, с металлическими емкостями уже можно было бы смириться с неточностью работы манипулятора, но тут уже взыграл спортивный интерес — хотелось довести работу до идеала. Так что добавили еще и контроль поперечного движения. Сначала задачу решили механикой — перед поворотным столом установили ограничители движения, а на манипулятор посадили датчики давления — как только закрепленная на них проволока начинала давить на ограничитель, рука начинала двигаться в противоположную сторону, и сигнал от датчика постепенно уменьшался. Датчик с другой стороны тоже упирался, уже в свой ограничитель — шло уже два сигнала. А мостовая схема выравнивала оба сигнала, выдавая разницу на двигатель горизонтального поворота манипулятора, пока сигналы с обоих датчиков не сравнивались. Такой же принцип использовался и для ориентации по вертикали, только там датчик был всего один — манипулятору ведь придется вытаскивать колбу вверх. Поэтому схема нижнего датчика только поддерживала нужное давление на его проволочный щуп. Так, словно кошка усами ощупывая узость входа в гнездо, манипулятор и продвигался вперед к колбе. Ну и для определения колбы добавили еще один датчик — на "ладони" — как только он упирался в колбу, включалась схема захвата. А как только она выдавала нормальные сигналы сдавливания колбы — запускалась схема подъема, ну и так далее — было задействовано уже семнадцать операционников и шесть датчиков давления.
Предыдущая глава |
↓ Содержание ↓
↑ Свернуть ↑
| Следующая глава |