Предыдущая глава |
↓ Содержание ↓
↑ Свернуть ↑
| Следующая глава |
Ну, по сверхзвуковым потокам во второй половине сорок второго у нас было уже много специалистов. И появились они в процессе разработки оборудования для напыления металлов. Получив первые работающие схемы еще осенью сорок первого, разработчики не стали останавливаться на достигнутом, а наоборот, стали наращивать свои усилия — как количеством оборудования для исследований так и самими исследователями. И помимо исследований свойств самих напыляемых материалов, важной частью стали исследования истечения горячих газов через сопла — ведь там надо сжигать топливо — керосин, бензин, метан или что-то другое, подавать продукты сгорания в патрубок, где они будут подхватывать распыляемый металл, расплавлять его и затем переносить к поверхности напыления. Так вот на всем этом пути требовалось поддерживать и нужную температуру, и скорость потока, и его постоянство. А это — практически газодинамика в неприкрытом виде. Быстро поняв, что чем выше скорость потока, а, значит, и частиц напыляемого металла, тем плотнее и надежнее получаются напыляемые слои, исследователи начали работать со сверхзвуковыми потоками, благо сопло Лаваля было известно уже не одно десятилетие. Но с режимами, методами регулирования, составами горючей смеси наши работали еще полгода, зато к осени сорок второго, практически через год после начала работ вообще по напыляемым металлам, мы уже использовали аппараты со сверхзвуковым напылением. Помимо более прочных покрытий, мы получили наборы аппаратуры для исследований в термодинамике, а также более двухсот более-менее опытных исследователей. И вот, покорив очередную высоту, эта беспокойная команда стала озираться вокруг — где бы еще приложить свои силы. Ведь идти на фронт мы им запретили — повоевали каждый по паре-тройке месяцев — и хватит. Пусть отдают долги Родине в цехах и лабораториях. И на фронт-то отпускали не сразу всех, а по очереди. А не отпустить было нельзя — ситуация была близка к бунту — 'Все воюют, а мы тут в теплых местечках сидим !'. Ну, хорошо — повоевали, получили ордена и медали, некоторые даже пролили кровь, а теперь — за работу ! Некоторых из этих ученых-милитаристов мы отвлекали на ракетную тематику и ранее, когда надо было разбираться с соплами — как с изучением советских конструкций, так и с разработкой собственных. Поэтому тема лежала фактически на поверхности и, так как проблема создания собственных конструкций встала уже в полный рост, мы, что называется, нашли друг друга. Временно оставив на разработках новых аппаратов напыления лишь небольшую часть, остальные исследователи дружно навалились на ракеты — в управлении скоростными газовыми потоками они съели уже не одну собаку.
Ведь истечение газов не менее важно, чем горение пороха, так как сначала мы контролировали скорость горения только давлением — чем выше давление, тем выше скорость горения. Это объясняется тем, что, во-первых, давление приближает область горения к поверхности шашки, точнее, горение начинается раньше, во-вторых, чем выше давление, тем выше теплообмен, соответственно, тем больше шашка получает тепла и тем интенсивнее ее состав разлагается и испаряется, в свою очередь поддерживая горение.
В замкнутом пространстве, каковым является гильза патрона или снаряда, этот процесс нарастает лавинообразно, и порох сгорает очень быстро, а при некоторых значениях может и сдетонировать. В ракетных же двигателях присутствует сопло, которое выпускает часть газов наружу, за счет чего и создается реактивное движение. Так вот совместной задачей пороховиков и сопловиков и было поддерживать нужное давление в двигателе при нужном расходе газов в реактивной струе. То есть пороховики обеспечивали скорость горения, достаточную для генерации газов, а сопловики обеспечивали расход газов, формируя и реактивную струю, и ограничивая давление в камере. И баланс прихода и расхода газа надо было соблюсти так, чтобы давление не нарастало постоянно, все увеличивая тем самым скорость горения, но и не падало бы, тем самым уменьшая эту скорость.
Так, при давлении в двадцать атмосфер скорость горения — четыре миллиметра в секунду, при ста атмосферах — уже сантиметр, при двухста — полтора. Но это для одной марки пороха. Для другого пороха картина будет выглядеть иначе — при двадцати атмосферах он вообще не будет гореть, а при сорока горит со скоростью сантиметр в секунду, но при двухста его скорость всего четырнадцать миллиметров. То есть марки пороха различались не только калорийностью, но и реакцией на повышение давления — одни повышали скорость резче, другие — мягче. Более резкие хороши для стартовых ракет, а вот для маршевых двигателей надо бы помягче, ведь давление в камере двигателя непостоянно из-за непостоянства характеристик шашек — недостаточно тщательное смешивание или прессовка оставляют в шашке неоднородности, и при достижении их огонь движется то быстрее, то медленнее. Соответственно, давление то растет, то падает. В некоторых пределах, конечно, но все-таки. Соответственно, более резкий порох при том же повышении давления начнет гореть более быстро, чем более мягкий, и полет получится более рваным, это если ракету вообще не разорвет большим давлением.
Но скорость горения в общем-то зависит не столько от давления, сколько от температуры у поверхности шашки, а уж как она поддерживается — другой вопрос. Так, при пятиста градусах горения практически нет, при тысяче оно идет со скоростью три миллиметра в секунду, при тысяче двухста — уже восемь, а при полутора — уже почти два сантиметра. Причем температуру можно поддержать не только давлением, но и введением компонентов, которые будут гореть жарко. С моей подачи в порох начали вводить порошок алюминия, что позволило снизить давление в камере на пять атмосфер, и заодно повысить стабильность горения — нужная температура-то теперь была практически всегда. Но порошок отнимал кислород у клетчатки, поэтому наши стали сыпать в порох еще и селитру. Ну, в принципе она является окислителем в черном порохе, поэтому это было логично. Но в моей памяти всплыло, что в ракетах использовали перхлорат аммония, и я закинул и эту мысль. Оказалось, что он еще лучший окислитель — в его молекуле было на один атом кислорода больше — четыре атома вместо трех, как в калийной селитре. И разлагался он начиная уже со ста пятидесяти градусов, а не с четырехсот, как селитра, то есть стабильность зажигания и горения смеси с участием перхлората была выше. К тому же он при разложении давал только газообразные вещества, в то время как селитра со своим калием давала твердые частицы — то есть повышался еще и выход газа, а ведь именно газ давал реактивную струю. Так мы немного приблизились к смесевому топливу, о котором я либо забыл, либо вообще не знал, а у местных так и вообще без вариантов. Но впервые идея была реализована осенью сорок второго, когда мне продемонстрировали яркое горение обычной смолы с гудроном — наши просто смешали все это с алюминиевым порошком и тем же перхлоратом аммония:
— Смотрите, нам уже и пороха не надо !
— Молодцы. Когда можно будет запустить в производство ?
— Есть проблемы с эксплуатацией — смола ведь может размягчиться и потечь ... Может — в артиллерийских снарядах такое пригодится ?
— Может ... А каучук не пробовали ? — в голове снова всплыл небольшой фактик про современные мне ракеты.
— Хм ... в принципе, в нем тоже есть углерод и водород ... надо попробовать ...
— Попробуйте. — в принципе, натуральный каучук у нас тоже был — мы восстановили в местных колхозах и совхозах довоенный объем посадок каучуконосов — гваюлы, коксагыза и таусагыза — до войны эти растения Средней Азии выращивались в том числе и в БССР, и адаптировал их к условиями Европейской части СССР никто иной, как академик Лысенко. Вот мы и подхватили это дело, заодно восстановив и переработку каучука на Бобруйском химзаводе — местный каучук перерабатывали здесь начиная с тридцать седьмого года.
Так что ракетчики попробовали, и у них получилось — небольшие шашки, что они отлили из смеси каучука, алюминиевой пудры и перхлората аммония, и затем нагрели для затвердевания, горели ярко и мощно.
Получалось, что при объеме перхлората в семьдесят процентов, алюминия — в двадцать и десяти — каучука, удельный импульс был почти две с половиной тысячи ньютонов в секунду на килограмм топлива, температура горения — три с половиной тысячи градусов, и скорости горения — от семи до шестнадцати миллиметров в секунду. То есть показатель степени — ниже, чем у баллиститных порохов. И это был не предел — наши ставили опыты с добавлением взрывчатки — ДНТ, ТНТ, гексогена — так там удельный импульс и температуры получались еще выше, а скорость горения — ниже. То есть ракета могла лететь на большее расстояние с меньшим запасом топлива. Самое главное — получалась очень технологичная схема изготовления шашек — вместо прессования их можно было отливать в формы — кажется, мы получали массовое производство ракетной техники. Не знаю, насколько оно нам было нужно в данный момент, но на будущее точно пригодится — хотя бы в качестве средства быстрого развертывания мобилизационных мощностей.
Но наши ракетчики пошли еще дальше. Действительно, а чего мы отливаем шашки в формы, затем формируем из этих шашек заряд, затем вкладываем его в корпус ... Почему бы не отливать сразу в корпус ? К сожалению, эту мысль высказал один из 'студентов', поэтому поначалу к ней отнеслись прохладно, но, вместе с тем, идея не выглядела совсем уж бредовой. Даже наоборот. Поэтому на очередном техническом комитете все-таки решили проверить и ее. И по мере реализации этого решения скепсис все уменьшался и уменьшался. Поначалу был затык с тем, как формировать центральный канал. Вставили стержень, залили с ним, а потом вытащили. Ну, не сразу — он все-таки схватился с топливом, так что первую шашку разломали и затем сожгли как мусор. Потом стали вставлять стержни, обмазанные графитом, солидолом — в общем, чтобы его можно было потом вытащить — и дело пошло. А новое топливо, заливаемое по-новому, показало просто отличный результат. Оно ведь плотно примыкало к стенкам камеры сгорания и защищало их от жаркого пламени. Получалось, нам снова можно было вернуться к старому варианту стенок, а то с такими температурами только на теплозащитной обмазке мы теряли более трех килограммов веса, а сам корпус требовалось бы делать чуть ли не сантиметр толщиной. Дополнительным бонусом был более плавный ход ракеты — из-за более медленного сгорания шашка горела дольше, соответственно, возрастала дальность ракеты. А технология заливки позволяла делать шашки, в принципе, любого диаметра. Мы, правда, не стали впадать в гигантоманию, ограничившись нашими существующими калибрами. Но и так — дальность действия повысилась чуть ли не в три раза — твердое топливо одновременно делало стенки корпуса более жестким и защищало их от жара почти до самого конца работы двигателя, а практически полное заполнение камеры сгорания позволяло запихнуть в сравнительно небольшие корпуса значительное количество топлива — если раньше было пустое пространство между шашками, между шашками и корпусом, то сейчас единственным пустым пространством был только канал. Правда, зимой у нас что-то не заладилось — ракеты на новом топливе иногда сгорали во время полета, но ближе к лету все стало снова нормально, так что к августу мы выкатили нашу новую технику на боевые испытания.
Собственно, практически вся наша ракетная техника, что мы применяли в бою, была экспериментальной — конструкции постоянно менялись. Так, первое применение в Оршинской бойне весной сорок второго прошли ракеты еще на конструкции РС-132 — мы уменьшили вес БЧ, за счет чего поместилась аппаратура управления. С высотой полета в три километра, они оказали больше деморализующий, чем реальный боевой эффект на немцев, так что те на время притихли со своими полетами. Затем, понемногу, они все-таки начали снова летать на бомбежки, и выяснили, что ракет у нас немного, и увернуться от них не составляло труда — ну, истребителям уж точно. Поэтому истребители и стали немецкой ПРО. Бомберам-то, что обычным, что пикирующим, доставалось, так что им приходилось подниматься все выше и выше, снижая и нагрузку, и точность бомбометания. Ну а мы тянулись вслед за ними ввысь. Правда, как я уже писал выше, поначалу мы старались не отходить от классической конструкции, оставив теми же и внешние размеры, и состав пороха, разве что уменьшили толщину стенок корпуса за счет применения теплозащиты — но и все. Так что до лета сорок второго у нас все еще оставалась старая конструкция — мы отлаживали производство пороховых шашек и проводили опыты по управляемому сгоранию — принюхивались к новой технологии, наращивали статистику, кадровый состав и оборудование.
И, получив в июне сорок второго новые М-13, мы сделали резкий скачок вперед. Во-первых, мы точно так же переделали конструкцию, облегчив ее за счет толщины стенок корпуса и боевой части. А во-вторых, внеся эти изменения, мы поняли, что в общем-то горазды создавать уже и свои конструкции. Так что с осени сорок второго они пошли чуть ли не потоком.
Так, сразу пошло разделение ветвей зенитных ракет. Одни ракеты стали уменьшаться в размерах — немцы все бегали от нас по высотам, поэтому порой летели на низких высотах до трех километров, рассчитывая проскочить нашу ракетную оборону за счет скорости, благо ствольные ЗСУ-23 туда уже не доставали, а более мощные орудия мы использовали как ПТО. Поэтому-то нам и потребовалась ракета для таких небольших высот — расход пороха получался небольшим, и их можно было клепать десятками в день.
Другие ракеты работали на высотах до семи километров — после появления у нас низковысотных ракет этот эшелон стал с ноября сорок второго основным у немецкой авиации. Поняв, что на низких высотах мы сбиваем их чересчур лихо, немцы подняли повыше свои бомберы, а в качестве ПРО стали использовать истребители. Пролетая на большой скорости над землей, они могли обстрелять обнаружившую себя выстрелом пусковую, а некоторые пилоты даже навострились сбивать ракеты.
А бомберы, пролетев большую часть пути на высоте, при подходе к цели снижались и, быстро отбомбившись, снова забирались наверх. Конечно, у цели их тоже встречали низковысотные ракеты, и бомберы получали свое, но, во-первых, бомбежка все-таки происходила, во-вторых, далеко не все объекты мы могли прикрыть ЗРК даже в начале сорок третьего, а в-третьих, участки, с которых производился пуск ракет, также подвергался бомбежке. Весной сорок третьего сложилась практически патовая ситуация — немцы только и делали, что бомбили наши ракетные установки, а мы еле-еле успевали изготавливать новые. Повсеместно происходили жаркие схватки неба с землей, когда навстречу бомбам тянулись дымные шлейфы, и каждый раз было непонятно, что произойдет раньше — бомба упадет рядом с пусковой, разнеся заодно и антенны наводки, а и то разбив станцию наводки, или же ракета все-таки успеет достать бомбера. Семьсот маловысотных пусковых и триста средневысотных с трудом сдерживали натиск хотя бы на города, не говоря уж о позициях — те отбивались как могли — двадцатитрехмиллиметровками, крупнокалиберными пулеметами, и изредка — получали истребительное прикрытие. Для периметра более тысячи километров установок было катастрофически мало. Даже если их расставить с равными интервалами, то на каждую получим по километру прикрываемого периметра. Это при том, что ракета могла лететь только вверх, ну, отклоняясь градусов на двадцать-двадцать пять. То есть одна пусковая не могла прикрыть даже километр. Не говоря уж о том, что немцы летали группами, и одиночная пусковая станет легкой добычей, а группа все-равно пролетит дальше, вот только там уже не будет ракетного прикрытия.
Предыдущая глава |
↓ Содержание ↓
↑ Свернуть ↑
| Следующая глава |