Страница произведения
Войти
Зарегистрироваться
Страница произведения

До и после Победы. Книга 3. Перелом. Часть 2


Статус:
Закончен
Опубликован:
25.05.2018 — 25.05.2018
Читателей:
1
Аннотация:
Вынесены главы 24-50
Предыдущая глава  
↓ Содержание ↓
  Следующая глава
 
 

Но к тому моменту мы работали уже по другим технологиям изготовления элементов — вакуумной и физической. Точнее, они обе были и вакуумными, и физическими — поликристаллическая пленка сульфида свинца в обоих случаях получалась осаждением при нагреве в вакууме. Но температуры и дальнейшая технология были разные, поэтому как-то так и сложились такие названия. Сам принцип таких физических методов родился как раз в процессе моих попыток создать биржу проектов, когда я еще бегал по лабораториям сам, пытаясь разрулить возникавшие проблемы силами других специалистов. Осаждением пленок в вакууме мы занялись, естественно, с моей подачи — я тренировал народ для будущих прорывов в микроэлектронике, поэтому с конца сорок первого сутками напролет сначала пара десятков, а к весне сорок второго — уже более трехсот человек только и делали, что тренировались испарять и осаждать разные вещества. Пока — только чтобы набить руку, потренироваться в методах получения пленок и исследовании их свойств. Ну, был и выхлоп — мы стали производить резисторные матрицы для радиоаппаратуры, что уменьшило трудоемкость ее изготовления, массу и размеры, затем пошли конденсаторные матрицы — для регистровой памяти наших первых ЭВМ, еще на лампах. В общем, работали не впустую. И вот, как-то поучаствовав в очередной планерке разработчиков ИК-детекторов, я и спросил:

— Вам ведь нужна поликристаллическая пленка ?

— Да.

— А не все-ли равно — как она будет получена ?

— Все делают химическим осаждением.

— А если попробовать напылять ? В вакууме.

— Можно и попробовать ...

Так я и свел две ветки исследований. И результаты этого научного скрещивания стали прорывом в нашей ИК-технике.

"Вакуумная" технология была незамысловатой. Делалась стеклянная колба — сантиметр-два в диаметре и длиной пару-тройку сантиметров, на ее плоский торец наносилось токопроводящее покрытие — тонкий слой золота. К нему припаивался контакт и выводился наружу. Затем внутрь колбы засыпался порошок сернистого свинца, система подсоединялась к вакуумному насосу, воздух откачивался в течение часа-полтутора-двух, и затем порошок сернистого свинца нагревался до шестисот-семисот градусов в вакууме — при этом он возгонялся и оседал на охлаждаемый стеклянный торец — это покрытие и становилось фоточувствительным элементом. Его еще надо было активировать, прогрев в разреженной среде кислорода при температуре в триста-четыреста градусов. Потом наносился второй контакт из золота — внутрь вводился микротигель, из которого золото испарялось и оседало на фоточувствительной пленке, находившейся с внутренней стороны колбы. Затем к этой пленке припаивался второй вывод, колба запаивалась и отсоединялась от вакуумной системы — и — вуаля! — фоточувствительный элемент готов!

Один из десяти в лучшем случае. И еще пара-тройка могла работать какое-то время — от пяти минут до нескольких часов — на них, а особенно на остальных — совсем уж бракованных — все было не слава богу — либо отпаивались контакты, либо контакты не пропаивались, либо кусок золотой пленки с внутренней стороны имел разрывы, либо она отслаивалась, либо осажденная пленка при насыщении кислородом слишком сильно перекристаллизовывалась и изменяла свои свойства, а то и рвала пленку из золота — выхлоп был очень незначительным. Но мы продолжали исследования. В начале весны сорок второго по теме вакуумных фоторезисторов только на их изготовлении трудилось уже более сотни человек — порядка пятнадцати исследовательских групп, и при длительности полного цикла изготовления одной партии из десяти штук в шесть часов они умудрялись изготавливать по четыреста элементов в сутки. При этом они использовали шестьдесят насосов низкого и среднего вакуума, двадцать — высокого и пять — сверхвысокого, около десяти паяльных ламп, сорока нагревателей ну и прочей техники по мелочи. И потом эти элементы препарировало еще более трех сотен лаборантов. Они исследовали вольтамперные характеристики, характеристики чувствительности, скорость деградации при повышенной температуре. Каждый прибор обнюхивался со всех сторон — размер зерна, состояние контактов и напыления, химический состав — все подвергалось тщательному изучению. Причем в каждой партии из десяти штук приборы исследовались через заданные планом эксперимента промежутки времени — часть — сразу после изготовления, часть — через сутки, неделю, месяц — мы пытались понять, как, скажем, длительность выдержки при высокой температуре повлияет на деградацию характеристик прибора. И таких параметров было много — в месяц исследовалось более десяти тысяч элементов — то есть в среднем по одному прибору в сутки на одного лаборанта — как обычно, мы пытались с помощью массовых исследований быстро вывести технологию на приемлемый уровень.

Так, вскоре после начала исследований мы догадались делать на плоской стеклянной стороне не сплошное покрытие, а растр — два набора параллельных дорожек, которые и были контактами фоторезистора. Дело пошло лучше — выход годных элементов сразу подскочил до тридцати процентов. Но проблема их деградации оставалась, и мы над ней бились и до сих пор. Как и над управлением характеристиками фотоэлемента — размер зерен поликристаллической пленки зависел от режима возгонки — температуры, графика и времени нагрева, а от размеров зависела фоточувствительность. Зависела она и от режимов обработки кислородом. И все эти зависимости мы исследовали, прерывая процессы на разных стадиях — начнем напылять пленку, но через некоторое время останавливаем, достаем образец и смотрим — как там растут кристаллы — на чистом стекле, на кварце, на оксиде алюминия, а если предварительно осадить металл, или сульфид, или оксид — чтобы они создали сетку зародышей для будущих кристаллов. В общем, зависимостей было много, и мы все их старались исследовать при разных температурах и времени возгонки, охлаждения, выдержки.

От этих же параметров зависела и скорость деградации элемента — когда его чувствительность упадет на треть, на половину, на две трети — мы начали поставлять в войска калибровочные устройства, с помощью которых специалисты подразделений технического обслуживания или сами бойцы следили за характеристиками ИК-приборов, замеряя значения сигнала от источников тепла с постоянными параметрами. Так что статистику мы вели, войска постоянно получали "свежие" фотоэлементы, а ученые забирали отработавшие — для препарирования и изучения — что же в них такого изменилось. Если в начале работы вакуумных элементов их срок службы составлял от силы несколько дней, то сейчас он возрос уже до семи недель с деградацией в тридцать процентов, а деградация в шестьдесят наступала уже через полгода, причем в последних сериях мы рассчитывали на тридцатипроцентную деградацию уже через семь-восемь месяцев — ученые догадались, что если в вакуумной колбе создать кислородную среду, то она сможет возмещать кислород, уходящий из чувствительного элемента, поэтому его характеристики будут дольше поддерживаться, ну или хотя бы медленнее ухудшаться. Оставалось только выяснить — какая среда будет наиболее подходящей. А учитывая, что и элементы делались с разными техусловиями ... кажется мы снова придумали себе работенку.

Так что вакуумная технология пока выигрывала первенство, но и "мокрая" вдруг выстрелила с самой неожиданной стороны — наши исследователи открыли квантовые точки. Ну, кажется, это именно они. Хотя таких "выстрелов вдруг" у нас было немало, чему способствовала стандартизированная методика исследования веществ, которые мы получали в ходе реакций. С каждым полученным веществом делали разные опыты. Его облучали светом разной длины и интенсивности и снимали спектрограмму отраженного света. Его намагничивали с разной силой и измеряли остаточную намагниченность. Его помещали в электрические поля и измеряли размеры, излучения, намагниченность. Его помещали в магнитные поля разной интенсивности и облучали. Направляли пучки ионов и электронов. Просвечивали, нагревали, изгибали, растворяли и сжимали. И меряли, меряли, меряли — излучение, магнитные и электрические поля, коэффициенты преломления, коэффициенты температурного расширения — было более двух десятков параметров, что замеряли после каждого эксперимента. Ну а что ? "Студентов" у нас много — пусть руку набивают. Так что открытия были поставлены на поток, фактически, при нашей организации научных исследований они были закономерны.

Вот и квантовые точки меня не особо удивили — просто уже привык, что каждую неделю происходит что-то подобное. И, хотя я не был готов к началу эры нанотехнологий, и даже не задумывался о ней, но раз мы в нее вступили — пусть будет. Сами квантовые точки назывались так потому, что размеры частиц были близки к размеру явлений, что в них происходили — единицы и десятки нанометров. Соответственно, движение электронов ограничивалось уже совсем небольшими размерами нанокристалла, и в зависимости от размера частицы ширина запрещенной зоны была разной. Причем — для одного и того же материала. Наши начинали работать с сульфидом свинца, но он излучал и поглощал уже в ИК-спектре, а вот сульфид кадмия работал в видимой области — сделай частицы размером двадцать нанометров — они будут люминисцировать красным светом, а частицы в два нанометра дадут уже фиолетовый. Повторю — это все с одним и тем же веществом — сульфидом кадмия. Без каких-либо добавок, только за счет размера самих частиц, то есть мы вступали в очень интересную область явлений, зависящих от размера частиц.

И первым таким объектом и стали квантовые точки — их-то и получили наши исследователи, когда стали пытаться изготавливать пленки с максимально однородным составом частиц — они надеялись, что это позволит хоть как-то улучшить ситуацию с изучением поликристаллических пленок, а то уж больно они были неоднородны — и размеры частиц, и площади соприкосновения гранями между частицами — ну какая тут повторяемость опытов при таком хаосе ? Вот они и стали пытаться синтезировать частицы с участием поверхностно-активных веществ — по их предположениям, эти вещества будут крепиться на растущие кристаллы и прекращать их рост, защищая поверхность от присоединения новых частиц и уменьшая энергию поверхности. По сути, так и выходило, сложнее было подобрать такое вещество, которое будет ограничивать рост кристаллов конкретного соединения — молекулы этого вещества должны прилипнуть к кристаллу одним концом и вместе с тем иметь сродство к среде, в которой происходит рост кристаллов, чтобы они не выпали в осадок. Ну, там все было сложнее, и наши еще разбирались в механизмах работы, но те же сульфиды свинца и кадмия уже выращивали граммами, используя поливиниловый спирт — судя по рассказам ученых, они пришли к нему вполне осознанно, исходя из соображений о распределении зарядов в молекулах сульфидов и спирте, так что, наверное, дело пойдет. Пока в составах еще была некоторая неоднородность — они светились разыми оттенками, то есть в них присутствовали точки разных размеров. Но исследователи игрались с технологией — ведь чем выше концентрация перенасыщенного раствора над насыщенным, тем быстрее образуются зародыши, тем больше центров кристаллизации, и соответственно тем равномернее получающиеся кристаллы. Ну, тут уж только играть температурой — сначала делать ее высокой, чтобы растворить побольше вещества, а затем опускать максимально резко, чтобы это количество растворенного вещества стало для новой температуры перенасыщенным раствором. Тут уж — только использовать малые объемы, хотя бы в оном измерении, скажем, плоские слои между твердыми поверхностями — другими способами тепло быстро не отнять.

Ладно, посмотрел я на эти квантовые точки, сказал "Делайте доклад, раскладку потребностей в ресурсах, будем работать" — и пошел дальше — не до них пока было. "Пленочники" мне вообще память на цилиндрических магнитных доменах показали. Будем запускать в работу. А ведь просил их, как людей, проработать вопросы по жестким дискам, да и запись на магнитную ленту надо развивать. Ну да, они и работали в этом направлении, да вот прочитали в научном бюллетене по физике, что разрабатывается технология напыления пленок из магнитных материалов — и загорелось им попробовать и это направление, а не все размешивать оксиды железа, хрома, никеля в лаках и наносить это тонкими пленками. Физики им захотелось, не устраивало, что пленки на оксидах в лаке слишком непостоянны на микроуровне. А тут нарыли в библиотеках, что еще в 1907 году Пьер Вейс высказал предположение о существовании доменов, в 1919 Генрих Брокгаузен подтвердил их наличие своими экспериментами, ну а в 1932 Фрэнсис Биттер уже вовсю наблюдал домены в микроскоп, посыпав ферромагнитный кристалл суспензией с магнитными частицами. Нашим, естественно, тоже захотелось, тем более что в 1935 Ландау и Лифшиц уже вывели теорию магнитных доменов.

Так что сначала наши просто намагничивали напыленную пленку и изучали получающиеся домены, затем стали елозить по ней магнитными головками, а потом им захотелось измерить максимальную скорость перемещения доменов в ферромагнитной пленке — так они напылили пленку из пермаллоя, фотолитографическими методами стравили лишнее, оставив только последовательности из палок и букв Т — и стали смотреть, как домены движутся между окончаниями этих элементов при их намагничивании вращающимся полем. Досмотрелись до того, что как-то раз сказали — "О! Так ведь это тоже память для вычислительных машин !". Да, это она и была.

Пока один кристалл с магнитной обвязкой содержал всего полкилобайта, зато работал гораздо быстрее наших магнитных дисков — эти же деятели их создали как раз к началу сорок третьего, пока еще со скользящей по поверхности диска головкой — "плавающие" головки сейчас отлаживали аэродинамщики. А мы эксплуатировали в тестовом режиме то, что пока было в наличии. Да и грех был жаловаться — к середине сорок третьего у нас работало уже более двух тысяч пластин диаметром двадцать сантиметров, емкостью от четырех до пятидесяти килобайт, всего — более двадцати мегабайт информации. Реальной информации на них было меньше — мегабайта три от силы, так как сыпались и выходили из строя они нещадно, так что приходилось дублировать данные, чтобы их не потерять. Ну а опытное производство исправно выдавало на гора новые пластины — мы пробовали разный размер зерна, лаки, режимы сушки — в общем, как обычно — нарабатывали статистику. Естественно, было уже и резервное копирование, где хранилось уже несколько сотен лент с общим объемом данных под гигабайт — надо будет также посмотреть, сколько и они проживут.

Так что даже полукилобайтная ЦМДшка будет как нельзя кстати — две тысячи таких устройств смогут хранить мегабайт информации, со временем доступа на порядок лучше, чем наши жесткие диски, да и в производстве они кажутся проще — им не требуется высокоточная механика перемещения головок чтения-записи. По дискам, конечно, я ожидал дальнейшего прогресса, но и ЦМД скорее всего не будут стоять на месте — разработчики говорили о плотности записи в сотню бит на миллиметр, то есть схема площадью в один квадратный сантиметр сможет хранить чуть ли не десять килобайт. И это только начало. В общем, нас ждет соревнование технологий — в группе магнитных средств хранения уже образовывались свои лагеря, и не только в разрезе "винтовики"-"ЦМДшники" — уже и последние начинали почковаться — группа из шести человек изучала намагничивание при локальном нагреве. Да, вот им лазеры точно не помешают. Но я их пока придерживал — и так поток новых сведений и технологий зашкаливал — я просто не успевал отслеживать вал сообщений об исследованиях и открытиях, а ведь требовалось по каждому определить перспективность, да и секретность — если по ядерным исследованиям и циклотронам темы были закрыты для широкой публики, то вот по ЦМД — закрывать или нет ? Непонятно. А тут уже и химики загорелись "поерзать" по поверхностям веществами, запертыми в таких доменах — что-то типа микрореакторов. Причем они узнали о ЦМД даже не через бюллетень, а в обычной столовке — там зарождалась супружеская пара, вот они и обедали компаниями, а заодно рассказывали о своих работах. Запретить ? Или фиг с ними ? Все-равно сливки мы снимем ... надо думать.

123 ... 1920212223 ... 434445
Предыдущая глава  
↓ Содержание ↓
  Следующая глава



Иные расы и виды существ 11 списков
Ангелы (Произведений: 91)
Оборотни (Произведений: 181)
Орки, гоблины, гномы, назгулы, тролли (Произведений: 41)
Эльфы, эльфы-полукровки, дроу (Произведений: 230)
Привидения, призраки, полтергейсты, духи (Произведений: 74)
Боги, полубоги, божественные сущности (Произведений: 165)
Вампиры (Произведений: 241)
Демоны (Произведений: 265)
Драконы (Произведений: 164)
Особенная раса, вид (созданные автором) (Произведений: 122)
Редкие расы (но не авторские) (Произведений: 107)
Профессии, занятия, стили жизни 8 списков
Внутренний мир человека. Мысли и жизнь 4 списка
Миры фэнтези и фантастики: каноны, апокрифы, смешение жанров 7 списков
О взаимоотношениях 7 списков
Герои 13 списков
Земля 6 списков
Альтернативная история (Произведений: 213)
Аномальные зоны (Произведений: 73)
Городские истории (Произведений: 306)
Исторические фантазии (Произведений: 98)
Постапокалиптика (Произведений: 104)
Стилизации и этнические мотивы (Произведений: 130)
Попадалово 5 списков
Противостояние 9 списков
О чувствах 3 списка
Следующее поколение 4 списка
Детское фэнтези (Произведений: 39)
Для самых маленьких (Произведений: 34)
О животных (Произведений: 48)
Поучительные сказки, притчи (Произведений: 82)
Закрыть
Закрыть
Закрыть
↑ Вверх