Предыдущая глава |
↓ Содержание ↓
↑ Свернуть ↑
| Следующая глава |
Тем более что "другое" было — одноэлементные теплодетекторы позволяли обнаружить пехотинца за триста-пятьсот метров, а системы с механическим сканированием и охлаждением — до двух километров, танк — вообще до семи, если где-то найти такие протяженные участки прямой видимости. Вот только с такими системами уже не побегаешь — их вес был за тридцать килограммов. Мы их устанавливали на технику, но использовали в основном против диверсантов — на переднем крае, особенно в атаке, их разобьют в считанные минуты.
Так что наши научники корпели дальше. И я был спокоен, что мы получим более совершенные приборы — ведь к сорок третьему у нас в лабораториях работало уже двадцать тысяч исследователей. Да, большинство из них были техниками — смешать-нагреть-охладить — и так — сотни и тысячи раз. Но большинство экспериментов и состоит из множества простых действий, когда более опытные задают направление исследований, а уже непосредственные исполнители оттарабанивают спущенную им сетку по температурам-времени-давлению и выдают результаты исследований полученных образцов — графики и колонки цифр, по которым те самые более опытные пытаются определить дальнейшее направление.
И тут мы были впереди планеты всей. Прежде всего — по массовости опытов. Ну сколько там исследователей в той же АЕГ ? Пятьдесят ? Сто ? Ну пусть сто пятьдесят. И в других фирмах не больше. А учитывая, что они конкуренты, делиться секретами между собой вряд ли будут, если только по приказу, но саботаж ученых — штука практически недоказуемая. У нас же система обмена научной информацией была уже отработана. Как и система подготовки кадров — в сорок третьем в дополнение к тем двадцати тысячам техников обучалось еще шестьдесят тысяч. Без отрыва от производства. Я вообще рассчитывал достичь где-то лет через десять величин в миллион научных работников, причем хотя бы десять процентов — действительно научных работников, а не научных техников-подмастерий — мы ведь обучали не только приемам работы с оборудованием и приборами, но и понемногу давали и научное образование, так что должно было выстрелить. Если удастся превратить республику в одну огромную лабораторию — будет очень неплохо. Ну а что ? Сейчас три миллиона служит в армии, еще почти столько же работает на оборону — раз можем отвлечь столько людей на войну, разве нельзя будет отвлечь пятнадцать процентов трудоспособного населения на научную деятельность, которая к тому же более полезна, в том числе и для войны ? Конечно можно. Вот и отвлечем. И миллион — это минимум на ближайшие десять лет. А там посмотрим. Тем более что у нас все больше просматривалось крупное направление по автоматизации научных и технологических исследований.
ГЛАВА 7.
Тема автоматизации была для СССР не новой. Еще в тридцать четвертом Президиумом академии Наук СССР была утверждена Временная комиссия по телемеханике и автоматике при Технической группе АН СССР — появился первый в мире специализированный центр в области автоматического управления. В тридцать пятом Временная комиссия преобразуется в постоянно действующий орган АН СССР и получает название Комиссии телемеханики и автоматики, в тридцать шестом начинает выходить журнал "Автоматика и телемеханика". В тридцать восьмом Временная комиссия была преобразована во Всесоюзный комитет по автоматизации, который вскоре был переименован в Комитет телемеханики и автоматики, ну и в тридцать девятом на его основе создан Институт автоматики и телемеханики Академии наук СССР.
Я ради интереса полистал журнал и был удивлен уровнем вопросов, которые там поднимались. Так, в первом номере за сороковой год была статья "Задача о блокировке и преобразование контактных групп", где прорабатывалась теория образования релейных схем. В статье "Автоматическое получение неподвижных изображений сечений (разрезов) движущихся объектов" рассматривались вопросы изучения динамических систем, в том числе применение рентгена для определения влияния зазоров на работу механизмов, точности взаимодействия механических звеньев, износа кинематических пар, упругих деформаций — и все это — на работающих механизмах. Из этой статьи я с удивлением узнал, что в СССР даже были томографы ! причем уже собственного производства !!! Сама томография впервые была предложена еще в двадцать первом, во Франции, так что это направление оказалось не новым. Ну а в статье соединяли томограф и стробоскоп и получали снимок разреза в работающем механизме — мы потом активно применяли этот метод для изучения тех же крутильных колебаний коленвалов, работы цилиндров, орудийных систем и стрелкового вооружения. Статья "Точный контроль размеров электрическими методами" наряду с другими статьями и брошюрами легла в основу работ по автоматизации контроля деталей. Ну а после статьи "Возможности применения фотоэлементов для целей автоматики" у меня и появилась мысль заняться ИК-техникой, раз тут фотоэлементы уже не новость.
Так что Советская власть много делала для того, чтобы развивать автоматизацию процессов, поэтому идея двигаться в этом направлении не вызвала никакого сопротивления, наоборот — она была воспринята как продолжение технической политики Советского Союза. Да и с марксизмом, считавшим наличие свободного времени главным мерилом богатства общества, эти идеи совпадали — я был удивлен, когда узнал, что в двадцатых для работников умственного труда установили шестичасовой рабочий день. Вот бы и у нас так, причем для всех.
Но — идеи идеями, а людей для их воплощения в жизнь не хватало. Пара десятков инженеров — железнодорожников и из промышленности, несколько десятков техников — вот весь хоть сколько-то опытный кадровый состав, что мы смогли наскрести для развития автоматизации. Так что мы активно вылавливали в наших рядах людей, которые хотели бы заниматься этим направлением — энтузиазм — великая сила, при его наличии знания и опыт нарабатываются быстро, вот когда отсутствует интерес — тогда не помогут никакие навыки — дело заглохнет. Поэтому, чуть кто только заикнется, что какое-то действие можно автоматизировать, его сразу хватали за шкирку, сажали за макетный стол и говорили — "Делай !". Росту энтузиазма способствовало и устроенное в республике соцсоревнование по количеству автоматизированных действий и работ, по сокращению времени за счет автоматизации — и руководство предприятий и лабораторий, и рядовые сотрудники — все в едином порыве бросились выискивать малейшие возможности как-то автоматизировать хотя бы некоторые процессы. Конечно, первая волна нам всего лишь высветила людей, кто горел новыми идеями и при этом не был прожектером. Да, из-за недостатка технических и научных знаний многие ошибались, особенно поначалу, но мы чудес и не ждали — на первом этапе главным было набрать кадровый актив. А народ после рабочего дня массово садился за парты и грыз гранит науки — к началу сорок второго мы через нашу печать прожужжали все уши насчет того, что трудовая деятельность — это такой же фронт, на котором можно бить фрица ничуть не хуже, чем в бою. И люди рвались в бой.
Но автоматизация не давалась легко. Народ предполагал, что будут применяться схемы на реле, но я сразу настроил всех на применение электроники — я подразумевал применение цифровых схем, хотя поначалу этого и не озвучивал. Но конструктора и энтузиасты начали двигаться в сторону аналоговых схем на лампах — а кроме реле ничего другого в конце сорок первого и не было. Но там все было непросто. Ведь каскады усиления, к которым все привыкли, могли усиливать только сигналы начиная с какой-то частоты, тогда как сигналы в автоматических системах управления могут иметь очень небольшие частоты — вплоть до сотых долей герца. И для обычных усилителей такие частоты были недоступны — случайные изменения эмиссии электронов, анодного тока, внешние наводки и прочие флуктуации как правило отличаются от частот усиливаемых сигналов, поэтому их сложно принять за полезный сигнал — их просто отсекали межкаскадными связями. Если же сам полезный сигнал изменяется гораздо медленнее, как в управлении технологическими процессами, то, чтобы не принять за полезный сигнал все эти "довески", вносимые электронными компонентами, приходится добавлять схемы для их компенсации. К тому же в обычных усилителях связь между каскадами организуется с помощью конденсаторов или трансформаторов, что позволяет избежать попадания положительного потенциала анода предыдущего каскада на сетку следующего, которой требуется отрицательное напряжение смещения относительно катода. И чем ниже частота, тем выше сопротивление таких межкаскадных разделителей. То есть для усилителей сверхнизких частот нужен другой способ разделения каскадов — они должны и пропускать низкие частоты вплоть до нуля, и одновременно обеспечивать отрицательный потенциал сетки. Другими словами, связь должна быть гальванической, то есть непосредственно через провода — например, включить в анодную нагрузку два сопротивления и питать сетку следующего каскада со средней точки. Так у нас появились схемы, которые мы назвали усилителями постоянного тока за их способность работать с сигналами очень низкой частоты, вплоть до нуля герц. Высокие частоты они тоже усиливали, но не это было их главной задачей. А впоследствии, когда мы наконец осознали, что эти усилители выполняют различные математические операции, мы назвали их операционными усилителями.
В отличие от обычных усилителей, в операционных было задействовано больше электронных и пассивных компонентов. Но на первом этапе главным словом для операционных усилителей было даже не "схемотехника", главным словом было "стабильность". Стабильность нужна и в работе самих ламп, и в резисторах-конденсаторах, и в источниках питания. Так, если для радиосвязи можно применять и "свежие" лампы, то для ОУ их надо было искусственно состаривать чуть ли не сто часов, чтобы их нутро пришло в стабильное состояние — чтобы стекло и арматура выделили бы остаточные газы, а геттер принял бы их, чтобы катод впитал ионы, что образуются из остаточных газов при столкновениях с электронами, а его покрытие наконец-то доупорядочило бы свою структуру и начало эмитировать электроны пусть и неравномерно по площади, но равномерно по общему потоку. В общем, надо было, чтобы лампа повзрослела и стала зрелой, опытной, "понюхавшей электронов". Резисторы тоже требовались с минимальными отклонениями от номинала — вскоре почти все резисторы с отклонениями менее процента шли только на операционные усилители. С конденсаторами была та же проблема.
Так что вопросы стабильности компонентов и схемотехнические вопросы мы решали параллельно. И ламп, и резисторов, требовалось в общем-то немало. Вначале наши ОУ представляли собой простой усилитель тока с обратной связью, требовавший всего одну лампу и пяток резисторов, но постепенно, по мере накопления опыта, схема разрасталась, так что к лету сорок третьего на один стандартный операционник требовалось уже минимум шесть ламп — по две на каждый каскад. Все из-за того, что каждый каскад усилителя выполнял свои функции.
Первый каскад выполнялся по последовательной балансной схеме, предназначенной для компенсации так называемого дрейфа нуля, когда напряжение изменяется даже при отсутствии сигнала. Дрейф происходит по разным причинам — случайное изменение эмиссии катода ламп, флуктуаций сопротивления резисторов из-за изменений температуры, пусть даже небольших, из-за изменений анодного питания по причине отклонений источника питания от своего номинального напряжения, как бы он не был стабилизирован. Собственно балансная схема являлась обычным мостом, в двух противоположных плечах которого были включены электронные лампы, и в последовательной схеме лампы включаются параллельно питающей диагонали моста. Соответственно, сама по себе мостовая схема позволяла выявлять малейшие отклонения от нуля, а наличие активных элементов — компенсировать это отклонение. Балансовые схемы и потребовались, чтобы снизить требования к стабильности питания и температурным режимам — с ними допустимы отклонения до одного процента.
Выходной каскад согласовывал выходное напряжение с последующими схемами — он уменьшал выходное сопротивление. А еще RC-цепочки, предотвращающие самовозбуждение.
Но самым главным элементом операционного усилителя была отрицательная обратная связь. Она не только позволяла создать усилитель одновременно и с большим, и со стабильным коэффициентом усиления, но ее характер определял функцию, которую выполнял операционник над входным сигналом. Она определялась типом и сочетанием элементов, включенных в обратную связь или на входе — суммирование, дифференцирование, интегрирование и так далее. А номинальная величина сопротивления или конденсатора задавали коэффициенты, с которыми идет обработка. Например, отношение величины входного сопротивления к сопротивлению обратной связи будет коэффициентом, с которым участвует напряжение на данном входе в суммировании с остальными входами. Простота реализации разных функций буквально покорила наших разработчиков, и я стал опасаться, что они излишне увлекутся аналоговыми схемами.
Конечно, эта простота была относительна, а на самом деле операционный усилитель был гораздо сложнее обычных схем. Так-то суммирование токов можно было бы сделать и на обычных резисторах, без применения схем на электронных лампах. Но в этом случае ошибка суммирования будет зависеть от количества входов и значения напряжений на каждом входе — то есть схему пришлось бы поднастраивать на каждое сочетание входных напряжений. На операционниках этого не происходит — схема сама выполняет компенсацию. То же с дифференцированием — его выполняет и обычная RC-цепь, но помимо того, что она работает дольше, она вносит погрешность — рост напряжения на конденсаторе отстает или опережает рост входного напряжения. В дифференцирующем ОУ это расхождение усиливается лампами, что ускоряет рост напряжения на конденсаторе в то же количество раз, что и коэффициент усиления ОУ — а это десятки тысяч раз. Конечно, какое-то запаздывание имеется, и это надо учитывать, но оно совершенно не сравнимо с запаздыванием обычной RC-цепочки, а уж по точности они и рядом не валялись. Аналогично, интегрирование с применением операционников выполняется также RC-цепями, только теперь конденсатор включается между сигналом и землей, а не во входную линию. И в этом случае ОУ также дает увеличение быстродействия и точности, только теперь в обратную связь включается не резистор, а конденсатор.
Да, операционники тоже давали погрешность, но ее можно было контролировать в гораздо более широких пределах. Если на обычных RC-цепях конденсатор постепенно разряжается, то операционники свой конденсатор подпитывают, и чем дольше идет то же интегрирование — тем точнее оно получится. Мы ограничивались погрешностью в один процент, поэтому время с начала интегрирования до момента, когда проинтегрированное значение начинало использоваться в последующих каскадах, не превышало трех секунд даже для ОУ с общим усилением в тысячу раз, а допустимое время, в течение которого могли интегрировать входной сигнал, составляло более минуты — по сравнению с обычной RC-цепью, где уже после шести сотых секунды возникала ошибка интегрирования более одного процента — обычные цепи резистор-конденсатор явно не подходили для управления технологическими процессами, где требовалось отслеживать изменение параметров в течение минимум нескольких секунд, а то и минут. Увеличив усиление в десять раз, мы снизили время начала интегрирования с указанной точностью до одной секунды, а максимальное время интегрирования — увеличили до десяти минут.
Предыдущая глава |
↓ Содержание ↓
↑ Свернуть ↑
| Следующая глава |