Предыдущая глава |
↓ Содержание ↓
↑ Свернуть ↑
|
Last through the receiver are the ships designed to collect all this crap. Since they are manned, we had better not send them from Earth. Conservation of energy would freeze the pilots to ice in an instant. Consider the irony: to keep them from freezing, we must ship them from Pluto orbit!
It might be more efficient to send through the teleport system only a few ships and another prefab teleport receiver. The rest of the colony comes through the second receiver.
In any case, notice four advantages. You don't have to carry the entire cargo, or waste fuel accelerating it. You don't decelerate the ship, so none of your limited fuel supply need be reserved for that purpose.
The colonists need not twiddle their thumbs for decades. And the ship can be re-used.
Can and will. You just let it coast. Every time it comes near a star system, you have another colony. In eighty thousand years we leave a line of colonies clear across the galaxy, before we finally run out of stars.
Less peaceful societies would shove war fleets through the teleport system. It is hard to imagine a safer way to make war. The fleet is strewn all across the system, with all the warships at rest with respect to the universe at large. And how could the target system counterattack? To reach the invading system, they would have to catch a ship which has had years to accelerate to its tremendous velocity, and which is long gone into interstellar space before the attack can even begin.
During the Boston speech, a member of the audience suggested that teleportation be used to fuel the above craft. Specifically: the motor is a receiver, Open, with a flared nozzle attached. We drop a transmitter on Jupiter. Presto! Hellishly dense high-pressure gas expands explosively into the vacuum of space, driving the ship forward. Fuel supply: inefficient compared to ion drives or the like, but almost literally unlimited.
It won't work. Rather, it won't work for long. Remember, we have assumed that conservation holds.
The motor's exhaust velocity is the ship's own limiting velocity if we use teleportation to fuel the ship. Jupiter's atmosphere wouldn't expand fast enough to be useful. Even with a fusion drive, we lose momentum every time a droplet of hydrogen reaches the fuel tank. We have to get it back by firing the droplet through the rocket motor. When the two velocities balance. . . we can't go any faster.
Total conversion of matter to light does give us unlimited velocity. Then we have only the problem of what to do with the incoming fuel. We always have that problem. A droplet of hydrogen moving at a tenth of lightspeed would vaporize any fuel tank we can build today. Maybe in the future . . . with new materials. . . plenty of padding. . . springs...
Let's try something else.
THE ASSUMPTIONS: The distance one can teleport is relatively restricted. The greater the curvature of space-that is, the greater the proximity to a large mass-the shorter is the limiting distance.
We will assume that on Earth the limiting distance is two feet; around Mars's orbit, some miles; between stars, a few light minutes. Attempt to send a mass beyond the limiting distance, and it will emerge from the receiver as a fluid or a fine dust. The curvature of space distorts the relationships between atoms too greatly.
Again, we assume the conservation laws hold.
THE RESULTS: Feeble as far as true teleportation is concerned. We can teleport fluids, so fuel tanks disappear except for storage tanks and spacecraft. The best we can do for spacecraft is fuel a booster, with a heavily armored fuel tank, designed to lift spacecraft out of a gravity well at low speed. But we can use the system to build a ship...
See Figure 4 (page 103). We'll call this peculiar object the "end-teleport drive," and we'll say that it teleports itself onto its own front end. I invented it many years ago, but I never had the nerve to write a story about it.
Notice that if you push the button, the ship teleports onto its own front end; but if you hold the button down, it will teleport repeatedly, in a steady stream of images. One jump brings the ship to position 2; but the moment it begins to occupy position 2 it wants to be at position 3; as that image starts to form the ship wants to be at position 4, et cetera. If teleportation is rapid enough we can use it for transportation.
You refuse to believe in my ship? Then think of it as an exercise in speculation. Ridiculous as it may seem, we do get results.
1) Rate-of-travel of the ship is limited only by mechanical difficulties, that is, by the rate of successive teleportation. The end-teleport drive does not affect the ship's kinetic energy. We change only the position. So there is none of this nonsense about relativity.
2) We must assume a mechanical limit on rate-of-travel. Otherwise the ship goes off the edge of the universe.
3) You can take your ffinger off the button. Kinetic energy is teleported along with everything else; and as a perfect image you have free will.
4) The longer the ship is, the faster it will go, with a given rate-of-teleportation. But: the longer the ship is, the greater is the danger of getting too near a large mass. To land on Earth the ship would have to be less than two feet long.
In fact, you can't land it anywhere with the end-teleport drive. As with the inertialess drives in Doe Smith's LENSMAN series, you keep an intrinsic velocity which reappears when the drive goes off. To land the ship anywhere you need either inboard auxiliary rockets, or rocket tugs.
5) What happens if something gets in the way of the ship?
Good question. Many things definitely will. Light, for example.
A light beam crosses interstellar space. Suddenly, for an instant, the end-teleport ship is occupying that space. The ship's walls can't stop it, for the light never encountered the walls. A human eye can stop it if the light reaches that eye in time.
Result: everything on the ship is transparent. If we assume that some light will be picked up by the teleportation field and carried along with the ship, then how transparent everything is will depend on two things: the rate of travel, and the distance of an object from the passenger's eye. His hand is nearly opaque. The further wall is nearly invisible, because so much light is being picked up in the space between wall and eye...and dropped between wall and eye. The cabin in Figure 4 is unnecessary unless the ship carries rocket auxiliaries. With the end-teleport drive going, the stars are visible anywhere you look.
If the teleportation field will not transport light, the situation becomes more serious. At a useful rate of travel a light beam would have just time to traverse the diameter of a human eye before the eye disappears. So a human eye will still function. But the ship and all its contents, including the passenger, are totally invisible, and each passenger becomes a disembodied viewpoint falling between the stars.
Travel even faster, and a light beam may have time to touch the retina without first entering the lens of the eye. Now everything becomes a blur. On arrival the passenger becomes a psychiatric patient.
6) Interstellar dust would also be picked up en route. Most of it could be handled by a tough air conditioning system; but a certain proportion would appear already inside the transitory space occupied by the passenger. Definitely he would need medical attention on arrival.
7) Interstellar hydrogen would be swept up by the moving ship. Aboard an end-teleport drive there would be absolutely no smoking. Drinking, yes...
8) As for meteors and larger bodies. . . we'll use a trick.
Let's say we're going toward the galactic core, i.e. toward Sagitarius. Okay: Before we leave the system, we take our ship to within a few million miles of the Sun, on the Sagitarius side; and we hover.
We hover by end-teleporting outward as the Sun's gravity draws us inward. Half an hour of this should give us a respectable intrinsic velocity Sunward. Now we take off toward Sagitarius.
So we ram something en route. It can happen.
But . . . it takes energy to make two solid masses occupy the same space. Chances are we cannot teleport into what we've rammed. A fuse blows and the motor stops. That leaves the ship with its intrinsic velocity, which we have built up hugely in a direction opposite to the direction of travel.
So the ship backs up at hundreds of miles per second!
Even if we ram a planet, our intrinsic velocity is higher than escape velocity, and we're safe.
9) Conservation of energy rears its head once more. The ship becomes fiendishly cold as it leaves the solar system, and body temperature drops simultaneously.
The reverse occurs as we enter a system. It's a good thing we built a heavy air conditioning system to get rid of all that dust. We'll need it for temperature control.
VII
Why do I persist in assuming that the conservation laws hold?
This question caused a series of soapbox speeches, mostly in my defense (thanks, friends), along the back wall of my Boston audience. The assumptions are important, and I'm going to try to justify them.
1) The behavior of the universe does not change. In all known cases the laws of conservation of energy and momentum hold rigorously. Now we use them for prediction. The existence and most of the properties of the neutrino were predicted by use of these and other conservation laws. Later the neutrino itself was detected through judicious use of its own proposed properties.
If today's physicists can use conservation to predict ghost particles, I can use— them to predict the behavior of a teleport system.
2) In any case, I'm entitled to make any assumptions I like, if they are internally consistent. This is an exercise in speculation, remember? Speculation starts with assumptions. If you don't like mine, try your own; you might get some interesting results.
3) A passenger teleporting downhill must lose potential energy. Some equivalent gain in energy must appear. But why heat?
Good question. I myself generally assume that the energy will appear as a jump in electron orbits. Then the electrons drop back, releasing photons. The photons are absorbed before they reach the passenger's skin, giving heat. But almost any reasonable process will ultimately end in heat. Heat is the most general, most randomized form of energy.
Could the released energy appear as neutrinos? That would not give heat. But it would upset some of the obscure parity laws of nuclear physics (thus upsetting Isaac Asimov, Hal Clement, and thousands of reactionary physicists) and it would make uphill teleportation impossible, for the process would have to destroy neutrinos which weren't there in the first place.
VIII
How about a perpetual motion machine?
See Figure 5 (page 107). The idea is to use open transmitter and receiver booths. The cargo, thirty gallous of water, is teleported to the receiver. It immediately pours out into the open transmitter, which teleports it back to the receiver, et cetera. Put a water wheel in the system and we get power.
Obviously there's a flaw. If conservation holds, the water freezes pretty quick. Furthermore, thermodynamics says that the energy to run the system will be greater than the maximum energy to be obtained from the continuously falling water.
But the system is interesting in other ways.
Let's replace the water with a ton of iron filings. That way we can enclose the whole system in a vacuum chamber and stop worrying about atmospheric friction, water evaporation, and freezing of the water. We let the filings fail under gravity until the mass is a black stream, near absolute zero, moving at seven miles per second. That's nineteen minutes of operation.
Now we let it go another nineteen minutes. The velocity doubles, and we've let the filings fail the equivalent of twice the distance from infinity to the Earth's surface.
We could maintain this acceleration forever, provided we do one thing. We will have to build our system at the North (or South) Pole. Otherwise the stream of filings will seem to bend away from the transmitter door as the Earth turns. (BOOM!) So we're at the North Pole...
In thirty days the mass of the filings has doubled. In sixty days it has quadrupled. Note that while Earth pulls the filings, the filings pull the Earth. Minutely, at first. But the filings aren't really going anywhere, so we have the equivalent of a reactionless drive. Every month the thrust doubles. If we run the system long enough the filings will weigh as much as a star. Obviously we don't want that. Tides! But in its present state, turning off the system would destroy the Earth. So we set up a second receiver at the South Pole.
The stream of filings goes tearing off through the Earth's atmosphere, a blue flash of iron vapor ramming air. Even the gamma rays are going upward! What a show! Listen to that applause! But all the teevee cameras have melted...
Well, this is where I quit. But try a few postulates yourself, and see what you get.
Предыдущая глава |
↓ Содержание ↓
↑ Свернуть ↑
|