Страница произведения
Войти
Зарегистрироваться
Страница произведения

Цвет сверхдержавы - красный 2 Место под Солнцем


Статус:
Закончен
Опубликован:
02.09.2014 — 14.01.2021
Читателей:
21
Аннотация:
Preproduction вариант. Возможны любые дополнения и изменения. Растаскивание по онлайн-библиотекам - на совести растаскивающих. Последняя актуальная версия - только здесь.
Предыдущая глава  
↓ Содержание ↓
↑ Свернуть ↑
  Следующая глава
 
 

В эти же годы были построены дороги Кашира-Воронеж, Воронеж-Саратов, Воронеж-Шахты, Саратов-Балашов, Владимир-Иваново, Свердловск-Челябинск и ряд других.

Одновременно такая же дорожная сеть строилась в Китае и в Индии. Специалисты искали способ соединить развитую железнодорожную сеть Индии с железными дорогами на территории Советского Союза, но на пути каменно-снежной стеной стояли Гималаи.

Основным полигоном для внедрения новой системы грузооборота в СССР была железная дорога. В послевоенные годы рост грузовых и пассажирских перевозок вызвал необходимость увеличения пропускной и провозной способности железных дорог. В 1956 г. было принято постановление правительства «О генеральном плане электрификации железных дорог». В нем предусматривалось также внедрение тепловозной тяги. Хотя паровозы ещё использовались повсеместно, в эксплуатации появлялось всё больше тепловозов.

В связи с электрификацией железных дорог и интенсивным внедрением тепловозной тяги большое внимание должно было быть уделено инфраструктуре железных дорог — их путевому хозяйству. В начале 1956 г. это отмечали первые лица страны. В отчётном докладе на XX съезде КПСС Н. С. Хрущёв говорил о необходимости улучшения путевого хозяйства железных дорог.

26 мая 1956 г. вышло специальное совместное постановление правительства и ЦК КПСС «О мероприятиях по увеличению срока службы деревянных шпал», 10 апреля 1957 г. — аналогичное постановление «О мерах по улучшению качества выпускаемых рельсов и рельсовых скреплений», 24 сентября 1957 г. — «О мерах по повышению стойкости железнодорожных рельсов». 1 марта 1957 г. было принято постановление Совета Министров СССР и ЦК КПСС «О мероприятиях по расширению производства железобетонных шпал».

(В реальной истории постановления были приняты в 1959, 1960 и 1962 гг)

К тому времени уже были созданы локомотивы новых типов. В 1953 г. был построен первый двухсекционный тепловоз ТЭ3 с электрической передачей мощностью 2940 кВт (4000 л. с), а с 1956 г. начато его серийное производство. Локомотивостроительные заводы Харькова, Луганска, Коломны, Ленинграда, Брянска, Людинова, Мурома за 4—5 лет разработали десятки типов различных тепловозов и построили 15 образцов опытных локомотивов.

Для обслуживания регионов, где добывается природный газ, было предложено строить локомотивы с газотурбинными двигателями.

Такие локомотивы отличались высоким расходом топлива, но могли развивать очень большую мощность. Их можно было использовать для проводки особо тяжёлых и скоростных составов, а также для высокоскоростных пассажирских поездов. Пока ограничились опытными разработками, для приобретения практического опыта проектирования газотурбовозов.

(В 1957—1959 гг. в ЧССР были построены два опытных газотурбовоза мощностью 2350 кВт (3200 л. с.) с механической передачей. В СССР первый локомотив с газотурбинным двигателем П-01 мощностью 2570 кВт (3500 л. с.) был построен в 1959 г. Коломенским тепловозостроительным заводом. Сотников Е. А. Железные дороги мира из XIX в XXI век. М.: Транспорт, 1993)

Проанализировав опыт применения газотурбовозов на американских железных дорогах, решили строить их с мощными авиационными турбинами, переводя их на природный газ. В этом случае газотурбовоз получал преимущество за счёт значительно более высокой мощности. При этом окупался даже боле высокий расход топлива.

Также велись работы по переводу железных дорог страны на электрическую тягу.

Основной проблемой создания электровозов переменного тока на тот момент были ртутные выпрямители (игнитроны) — штука сложная, капризная и опасная. За счёт развития полупроводниковой преобразовательной техники коллекторные двигатели постоянного тока на 3000 В начали заменять двигателями переменного тока, асинхронными и синхронными. Они имели те же размеры, что и двигатели постоянного тока, но развивали большую мощность, были надежнее, долговечнее, дешевле в изготовлении и требовали меньше затрат на обслуживание. Первоначально в электровозах использовалась система ступенчатого реостатного регулирования, но одновременно была начата работа над импульсными тиристорными регуляторами.

Создание полупроводниковых приборов для силовой электроники началось в 1953 г. когда стало возможным получение кремния высокой чистоты и формирование кремниевых дисков больших размеров. В 1955 г. был впервые создан полупроводниковый управляемый прибор, имеющий четырёхслойную структуру и получивший название «тиристор». (Реальный факт)

Прогресс в электронной элементной базе позволил, по переданной информации, к 1957 году разработать запираемый тиристор с кольцевым выводом управляющего электрода. (АИ. Первые подобные тиристоры Gate Turn Off появились в 1960 г. в США. В нашей стране они больше известны как запираемые или выключаемые тиристоры. В реальной истории запираемый тиристор с кольцевым выводом разработан в середине 90-х годов. http://www.gaw.ru/html.cgi/txt/publ/igbt/tiristor.htm )

В ранних моделях тиристорной импульсной системы управления (ТИСУ) генератор импульсов и контроллер выполнялись на дискретных элементах или с ограниченным использованием логических схем малой степени интеграции, впоследствии дальнейшее развитие электроники позволило применять в управляющем блоке ТИСУ более гибкие программируемые цифровые микросхемы.

(В реальной истории в СССР в 1970 г. был построен первый в мире восьмиосный электровоз переменного тока ВЛ80 В-661 с бесколлекторными вентильными синхронными тяговыми двигателями. Сотников Е. А. Железные дороги мира из XIX в XXI век. М.: Транспорт, 1993)

В конце 50-х тиристорная система управления советского производства представляла собой железный шкафчик, потому и устанавливались такие системы на электровозах, а также на заведомо неподвижных устройствах, вроде станков. По мере миниатюризации электроники стали появляться синхронные вентильные двигатели меньших размеров, более удобные для применения в автономных изделиях.

В 1957 году завершился переход советских железных дорог на автосцепку. Это ускоряло обработку грузов, снижало расходы и трудоёмкость. В процессе испытаний на советских дорогах лучшие результаты показала автосцепка СА-3, разработанная в Институте реконструкции тяги под руководством профессора Валентина Филипповича Егорченко.

Небольшие двухосные грузовые вагоны активно заменялись современными, более грузоподъёмными четырёхосными. Чем больше груза можно перевезти в одном вагоне, тем экономичнее перевозка. Этот процесс завершился к 1965 году.

Важнейшим мероприятием, обеспечивающим более устойчивый, долговечный и дешёвый по содержанию путь, в годы шестой пятилетки было широкое внедрение железобетонных шпал, имеющих срок службы 50-60 лет.

Главное управление пути и сооружений и Заводы Министерства транспортного строительства ещё в 1955 г. приступили к изготовлению железобетонных шпал. Также проводилась плановая замена лёгких рельсов довоенного производства рельсами новых тяжёлых типов Р50 и Р65, более грузоподъёмными, а также реконструкция насыпей, с переводом путей на щебёночное основание, что позволяло проводить более тяжёлые составы. Помимо этого, для повышения средней скорости движения в ходе реконструкции пути проводили спрямление кривых в поворотах.

Средства связи на железной дороге начали внедрять ещё с 30-х. В 1948 г. начался серийный выпуск радиостанций ЖР-1 для внутристанционной радиосвязи. На железных дорогах начали применять поездную радиосвязь. С 1954 г. для поездной радиосвязи использовалась радиостанция типа ЖР-3, с повышенной помехозащищенностью и в 1,5 раза увеличенной дальностью действия. К 1955 г. более 700 станций советских железных дорог имели внутристанционную радиосвязь, поездной радиосвязью было оборудовано более 5200 км железных дорог.

Обсуждавшийся на совещании по ПВО вопрос скорейшего внедрения мобильной радиотелефонной связи подняли совместно министр путей сообщения Бещев и куратор сельского хозяйства, секретарь ЦК Шелепин. К ним подключились также министр нефтегазовой промышленности Михаил Андрианович Евсеенко и министр сельского хозяйства Владимир Владимирович Мацкевич. Они требовали внедрить мобильную связь на железной дороге, нефтеразработках, в сельском и лесном хозяйстве

Хрущёв даже удивился, что столь не связанные между собой люди проявили завидное единство во взглядах. Хотя этому было простое объяснение — и на железной дороге и в сельском хозяйстве, особенно на целинных просторах, связь была крайне необходима.

Бещев объяснил Хрущёву ситуацию со связью на простом примере:

— У нас сейчас, Никита Сергеич, используется внутристанционная радиосвязь. Это хорошо, но это — отдельная сеть связи. Мобильная связь, в том виде, как нам объясняли, будет работать совместно в единой сети с обычным телефоном. А это значит, что я хоть по обычному телефону из своего кабинета, хоть по мобильному из любого места смогу дозвониться до любого стрелочника с мобильным телефоном на другом конце страны. Такая возможность, сами понимаете, дорогого стоит.

Примерно так же аргументировали свой интерес и Шелепин с Мацкевичем:

— В сельском хозяйстве такая связь требуется постоянно. Представьте, что трактор где-нибудь на дальнем поле сломался, или грузовик застрял. Пока тракторист или водитель пешком до помощи доберётся — полдня пройдёт, а то и весь день. А на посевной или уборочной каждый день важен. Дайте нам мобильную связь — очень нужно!

Хрущёв подключил к вопросу министра радиопромышленности Калмыкова и министра электронной промышленности Шокина. Для ускорения развития мобильной связи был создан Воронежский НИИ связи, где начали разрабатывать транкинговую систему «Алтай», а в Московском государственном специализированном проектном НИИ Л.И. Куприянович уже работал над первым образцом мобильного телефона ЛК-1. (см гл. 02-20 Источник — http://izmerov.narod.ru/okno/)

Связь была основополагающим элементом системы управления движением, которую предстояло автоматизировать. Понимая, что Борису Сергеевичу Козину в одиночку столь сложную тему не потянуть, да и административного веса у него недостаточно, Никита Сергеевич поручил министру МПС Бещеву:

— Борис Палыч, надо к разработке АСУ железнодорожного транспорта подключить серьёзные силы. Подумайте, кому ещё эту тематику поручить можно.

Вскоре в ВНИИЖТе было образовано отделение вычислительной техники, которое возглавил и затем в течение 20 лет руководил этим направлением академик Петров Александр Петрович, первый заместитель директора ВНИИЖТ.

Разработкой теории организации вагонопотоков он начал заниматься ещё в военные годы, изложив её в фундаментальном труде «План формирования поездов (опыт, теория, методика расчетов)»

А. П. Петров обосновал и сформулировал концепцию автоматизированной системы управления железнодорожным транспортом (АСУЖТ), разработал целевую программу по реализации ее первой очереди.

Уже в 1960г. сетевой план формирования начали рассчитывать на ЭВМ, а в 1963г. вступила в строй опытная система автоматизации учета и оперативного управления, разработанная в институте для Московской дороги.

Академик Петров был инициатором создания на дорогах первых вычислительных центров и организации в МПС Главного управления вычислительной техники, занимался также координацией разработок АСУ для других видов транспорта в нашей стране, координацией исследований по транспортной кибернетике на уровне СЭВ и ОСЖД.

В перспективе предполагалось создать автоматизированную систему управления, которая могла бы непрерывно контролировать местоположение поезда, обеспечивать связь между поездом и центром управления, контролировать целостность состава, его скорость, положение стрелочных переводов и управлять движением поезда. Центральный процессор этой системы должен был собирать данные о местоположении и параметрах движения всех поездов, находящихся в зоне управления, состоянии путей, стрелок и сигналов и на основе этой информации формировать и передавать на поезда команды управления, обеспечивающие интервальное регулирование в соответствии с требованиями безопасности движения и выполнения графика.

Чтобы обеспечивать диспетчеров в реальном времени информацией, необходимой для управления движением, планировалось создание диспетчерских центров, оборудованных автоматизированными рабочими местами, современными средствами связи и отображения информации, вычислительной техникой. При этом автоматика должна была обеспечивать отображение местоположения поездов и их номеров, ведение исполнительного графика движения, разработку оперативного плана-графика, а в ряде случаев и автоматическую установку маршрутов.

Аналогичная система создавалась для автоматизированной обработки контейнерных грузов. Предполагалось, что ЭВМ будет управлять процессом сортировки, загрузки и выгрузки контейнеров, автоматически составлять планы загрузки контейнеров на поезд или судно, с учётом массы и очерёдности выгрузки, а также отслеживать каждый контейнер на всём пути следования от отправителя до получателя.

В перспективе предполагалось создание интерактивных программ для составления схем загрузки каждого контейнера, с учётом равномерности размещения массы. (Такие программы используют современные логисты.)

Программа создания электромагнитной пушки столкнулась с определёнными трудностями в реализации полноразмерного полигонного образца. Но наработанный по ней научный задел, как оказалось, можно было использовать и в других областях. В конце 1956 года Мстислав Всеволодович Келдыш и директор ВНИИЖТ академик Иван Андреевич Иванов продемонстрировали Никите Сергеевичу действующую модель поезда на магнитной подвеске.

— Здесь используется принцип линейного электродвигателя, — пояснил академик Иванов. — Есть два варианта. В первом на рельсах устанавливаются постоянные магниты, а в вагонах поезда — электромагниты, которые к ним притягиваются. Этот вариант более экономичен, магнитная левитация присутствует постоянно, т. е. поезд, даже остановившись, висит в воздухе. Но рабочий зазор всего около 10 миллиметров. (Так устроен немецкий поезд «Трансрапид»)

— Второй вариант — электромагниты вделаны в рельс, а постоянный магнит — в вагон. Такая система работает на принципе отталкивания (Японский вариант «Maglev») Поезд в этом случае взлетает лишь после разгона до 80 километров в час на колёсах с полиуретановым покрытием. Зато зазор в этом случае больше — около 100 миллиметров. Но надо держать под напряжением электромагниты по всей трассе. Их надо либо охлаждать до температуры сверхпроводимости, что дорого, либо тратить гигантское количество энергии.

— С учётом наработок по системе коммутации электромагнитной пушки, — добавил Мстислав Всеволодович, — мы предлагаем использовать тот же принцип, что в пушке Гаусса. Поезд занимает в каждый момент времени лишь ограниченную часть пути, и мы всегда знаем, когда и с какой скоростью он приближается — для этого можно поставить датчики. Можно разделить электромагнитные рельсы на участки и подавать ток на участок пути только при проходе поезда. Скорости здесь заметно меньше, чем в пушке, соответственно, и точность управления системой коммутации нужна меньшая, и расход энергии будет значительно меньше, и возиться с жидким азотом не надо — ведь каждый участок будет под током всего несколько секунд, пока по нему проходит поезд.

123 ... 8889909192 ... 168169170
Предыдущая глава  
↓ Содержание ↓
↑ Свернуть ↑
  Следующая глава



Иные расы и виды существ 11 списков
Ангелы (Произведений: 91)
Оборотни (Произведений: 181)
Орки, гоблины, гномы, назгулы, тролли (Произведений: 41)
Эльфы, эльфы-полукровки, дроу (Произведений: 230)
Привидения, призраки, полтергейсты, духи (Произведений: 74)
Боги, полубоги, божественные сущности (Произведений: 165)
Вампиры (Произведений: 241)
Демоны (Произведений: 265)
Драконы (Произведений: 164)
Особенная раса, вид (созданные автором) (Произведений: 122)
Редкие расы (но не авторские) (Произведений: 107)
Профессии, занятия, стили жизни 8 списков
Внутренний мир человека. Мысли и жизнь 4 списка
Миры фэнтези и фантастики: каноны, апокрифы, смешение жанров 7 списков
О взаимоотношениях 7 списков
Герои 13 списков
Земля 6 списков
Альтернативная история (Произведений: 213)
Аномальные зоны (Произведений: 73)
Городские истории (Произведений: 306)
Исторические фантазии (Произведений: 98)
Постапокалиптика (Произведений: 104)
Стилизации и этнические мотивы (Произведений: 130)
Попадалово 5 списков
Противостояние 9 списков
О чувствах 3 списка
Следующее поколение 4 списка
Детское фэнтези (Произведений: 39)
Для самых маленьких (Произведений: 34)
О животных (Произведений: 48)
Поучительные сказки, притчи (Произведений: 82)
Закрыть
Закрыть
Закрыть
↑ Вверх